Umweltwissenschaften
Permanent URI for this collection
Browse
Browsing Umweltwissenschaften by Title
Now showing 1 - 20 of 945
Results Per Page
Sort Options
- Item2°C and SDGs: United they stand, divided they fall?(Bristol : IOP Publishing, 2016) von Stechow, Christoph; Minx, Jan C.; Riahi, Keywan; Jewell, Jessica; McCollum, David L.; Callaghan, Max W.; Bertram, Christoph; Luderer, Gunnar; Baiocchi, GiovanniThe adoption of the Sustainable Development Goals (SDGs) and the new international climate treaty could put 2015 into the history books as a defining year for setting human development on a more sustainable pathway. The global climate policy and SDG agendas are highly interconnected: the way that the climate problem is addressed strongly affects the prospects of meeting numerous other SDGs and vice versa. Drawing on existing scenario results from a recent energy-economy-climate model inter-comparison project, this letter analyses these synergies and (risk) trade-offs of alternative 2 °C pathways across indicators relevant for energy-related SDGs and sustainable energy objectives. We find that limiting the availability of key mitigation technologies yields some co-benefits and decreases risks specific to these technologies but greatly increases many others. Fewer synergies and substantial trade-offs across SDGs are locked into the system for weak short-term climate policies that are broadly in line with current Intended Nationally Determined Contributions (INDCs), particularly when combined with constraints on technologies. Lowering energy demand growth is key to managing these trade-offs and creating synergies across multiple energy-related SD dimensions. We argue that SD considerations are central for choosing socially acceptable 2 °C pathways: the prospects of meeting other SDGs need not dwindle and can even be enhanced for some goals if appropriate climate policy choices are made. Progress on the climate policy and SDG agendas should therefore be tracked within a unified framework.
- ItemAbout the influence of elevation model quality and small-scale damage functions on flood damage estimation(Göttingen : Copernicus GmbH, 2011) Boettle, M.; Kropp, J.P.; Reiber, L.; Roithmeier, O.; Rybski, D.; Walther, C.The assessment of coastal flood risks in a particular region requires the estimation of typical damages caused by storm surges of certain characteristics and annualities. Although the damage depends on a multitude of factors, including flow velocity, duration of flood, precaution, etc., the relationship between flood events and the corresponding average damages is usually described by a stage-damage function, which considers the maximum water level as the only damage influencing factor. Starting with different (microscale) building damage functions we elaborate a macroscopic damage function for the entire case study area Kalundborg (Denmark) on the basis of multiple coarse-graining methods and assumptions of the hydrological connectivity. We find that for small events, the macroscopic damage function mostly depends on the properties of the elevation model, while for large events it strongly depends on the assumed building damage function. In general, the damage in the case study increases exponentially up to a certain level and then less steep.
- ItemAbrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Long, Hao; Fuchs, Markus; Yang, Linhai; Cheng, HongyiWe report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.
- ItemAccounting for environmental flow requirements in global water assessments(Göttingen : Copernicus GmbH, 2014) Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P.As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90-Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90-Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46-71% of average low-flows) compared to high-flow periods (17-45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90-Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2 = 0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF).
- ItemAdaptation required to preserve future high-end river flood risk at present levels(Washington : American Association for the Advancement of Science (A A A S), 2018) Willner, S.N.; Levermann, A.; Zhao, F.; Frieler, K.Earth’s surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries.
- ItemAdaptation strategy to hydrological impact of climate change strategie [Adaptace na hydrologické dopady změny klimatu](Berlin : de Gruyter Open, 2010) Slámová, R.; Martínková, M.; Krysanova, V.In the context of discussed global climate change the emphasis is placed mainly on the adaptability of the water management methodology at present time. Therefore a questionnaire inquiry oriented to the perception of the climate change impact and current state of adaptation strategies implementation was carried out and evaluated. The research was realised among the water management experts in six large transboundary basins: Elbe, Rhine, Guadiana, Amudaria, Orange and Nile. The questionnaire was divided into six parts concerning for example: expected climate change impacts, adaptation measures, drivers for development of adaptation strategy, adaptation barriers etc. Responses were evaluated with rating and the dominant answers and lists of priority were established. Results were evaluated looking for overall conclusions in all or almost all regions, as well as conclusions for each region. The main benefit of the research lies in the evaluation based principally on the opinions of policy makers, stakeholders and water managers in the river basins not on the climate scenarios. The outcomes have proved understanding of the climate change impact issue over all six basins, only the approach to adaptation is partly different. The historical development of water management in the basin influences the perception as well.
- ItemAdaptive responses of animals to climate change are most likely insufficient([London] : Nature Publishing Group UK, 2019) Radchuk, Viktoriia; Reed, Thomas; Teplitsky, Céline; van de Pol, Martijn; Charmantier, Anne; Hassall, Christopher; Adamík, Peter; Adriaensen, Frank; Ahola, Markus P.; Arcese, Peter; Avilés, Jesús Miguel; Balbontin, Javier; Berg, Karl S.; Borras, Antoni; Burthe, Sarah; Clobert, Jean; Dehnhard, Nina; de Lope, Florentino; Dhondt, André A.; Dingemanse, Niels J.; Doi, Hideyuki; Eeva, Tapio; Fickel, Joerns; Filella, Iolanda; Fossøy, Frode; Goodenough, Anne E.; Hall, Stephen J. G.; Hansson, Bengt; Harris, Michael; Hasselquist, Dennis; Hickler, Thomas; Joshi, Jasmin; Kharouba, Heather; Martínez, Juan Gabriel; Mihoub, Jean-Baptiste; Mills, James A.; Molina-Morales, Mercedes; Moksnes, Arne; Ozgul, Arpat; Parejo, Deseada; Pilard, Philippe; Poisbleau, Maud; Rousset, Francois; Rödel, Mark-Oliver; Scott, David; Senar, Juan Carlos; Stefanescu, Constanti; Stokke, Bård G.; Kusano, Tamotsu; Tarka, Maja; Tarwater, Corey E.; Thonicke, Kirsten; Thorley, Jack; Wilting, Andreas; Tryjanowski, Piotr; Merilä, Juha; Sheldon, Ben C.; Pape Møller, Anders; Matthysen, Erik; Janzen, Fredric; Dobson, F. Stephen; Visser, Marcel E.; Beissinger, Steven R.; Courtiol, Alexandre; Kramer-Schadt, StephanieBiological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. © 2019, The Author(s).
- ItemAdhesive and Self-Healing Polyurethanes with Tunable Multifunctionality([Beijing] : China Association for Science and Technology, 2022) Zhou, Lei; Zhang, Lu; Li, Peichuang; Maitz, Manfred F.; Wang, Kebing; Shang, Tengda; Dai, Sheng; Fu, Yudie; Zhao, Yuancong; Yang, Zhilu; Wang, Jin; Li, XinMany polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (CPU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.
- ItemAdjusting climate model bias for agricultural impact assessment: How to cut the mustard(Amsterdam [u.a.] : Elsevier, 2019) Galmarini, S.; Cannon, A.J.; Ceglar, A.; Christensen, O.B.; de Noblet-Ducoudré, N.; Dentener, F.; Doblas-Reyes, F.J.; Dosio, A.; Gutierrez, J.M.; Iturbide, M.; Jury, M.; Lange, S.; Loukos, H.; Maiorano, A.; Maraun, D.; McGinnis, S.; Nikulin, G.; Riccio, A.; Sanchez, E.; Solazzo, E.; Toreti, A.; Vrac, M.; Zampieri, M.[No abstract available]
- ItemAdvancing environmental intelligence through novel approaches in soft bioinspired robotics and allied technologies: I-Seed project position paper for Environmental Intelligence in Europe(New York,NY,United States : Association for Computing Machinery, 2022) Mazzolai, Barbara; Kraus, Tobias; Pirrone, Nicola; Kooistra, Lammert; De Simone, Antonio; Cottin, Antoine; Margheri, LauraThe EU-funded FET Proactive Environmental Intelligence project "I-Seed"(Grant Agreement n. 101017940, https://www.iseedproject.eu/) targets towards the development of a radically simplified and environmentally friendly approach for environmental monitoring. Specifically, I-Seed aims at developing a new generation of self-deployable and biodegradable soft miniaturized robots, inspired by the morphology and dispersion abilities of plant seeds, able to perform low-cost, environmentally responsible, in-situ measurements. The natural functional mechanisms of seeds dispersal offer a rich source of robust, highly adaptive, mass and energy efficient mechanisms, and behavioral and morphological intelligence, which can be selected and implemented for advanced, but simple, technological inventions. I-Seed robots are conceived as unique in their movement abilities because inspired by passive mechanisms and materials of natural seeds, and unique in their environmentally friendly design because made of all biodegradable components. Sensing is based on a chemical transduction mechanism in a stimulus-responsive sensor material with fluorescence-based optical readout, which can be read via one or more drones equipped with fluorescent LiDAR technology and a software able to perform a real time georeferencing of data. The I-Seed robotic ecosystem is envisioned to be used for collecting environmental data in-situ with high spatial and temporal resolution across large remote areas where no monitoring data are available, and thus for extending current environmental sensor frameworks and data analysis systems.
- ItemAerial and surface rivers: Downwind impacts on water availability from land use changes in Amazonia(Göttingen : Copernicus GmbH, 2018) Weng, W.; Luedeke, M.; Zemp, D.; Lakes, T.; Kropp, J.The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5–12ĝ€% and runoff by 19–50ĝ€% according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land–water management.
- ItemAerial river management by smart cross-border reforestation(Amsterdam [u.a.] : Elsevier Science, 2019) Weng, Wei; Costa, Luís; Lüdeke, Matthias K.B.; Zemp, Delphine C.In the face of increasing socio-economic and climatic pressures in growing cities, it is rational for managers to consider multiple approaches for securing water availability. One often disregarded option is the promotion of reforestation in source regions supplying important quantities of atmospheric moisture transported over long distances through aerial rivers, affecting water resources of a city via precipitation and runoff (‘smart reforestation’). Here we present a case demonstrating smart reforestation's potential as a water management option. Using numerical moisture back-tracking models, we identify important upwind regions contributing to the aerial river of Santa Cruz de la Sierra (Bolivia). Simulating the effect of reforestation in the identified regions, annual precipitation and runoff reception in the city was found to increase by 1.25% and 2.30% respectively, while runoff gain during the dry season reached 26.93%. Given the city's population growth scenarios, the increase of the renewable water resource by smart reforestation could cover 22–59% of the additional demand by 2030. Building on the findings, we argue for a more systematic consideration of aerial river connections between regions in reforestation and land planning for future challenges. © 2019 The Authors
- ItemAerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain(Göttingen : Copernicus, 2014) Chen, J.; Zhao, C.S.; Ma, N.; Yan, P.The relative humidity (RH) dependence of aerosol light scattering is an essential parameter for accurate estimation of the direct radiative forcing induced by aerosol particles. Because of insufficient information on aerosol hygroscopicity in climate models, a more detailed parameterization of hygroscopic growth factors and resulting optical properties with respect to location, time, sources, aerosol chemistry and meteorology are urgently required. In this paper, a retrieval method to calculate the aerosol hygroscopicity parameter, κ, is proposed based on the in situ measured aerosol light scattering enhancement factor, namely f(RH), and particle number size distribution (PNSD) obtained from the HaChi (Haze in China) campaign. Measurements show that f(RH) increases sharply with increasing RH, and that the time variance of f(RH) is much greater at higher RH. A sensitivity analysis reveals that the f(RH) is more sensitive to the aerosol hygroscopicity than PNSD. f(RH) for polluted cases is distinctly higher than that for clean periods at a specific RH. The derived equivalent κ, combined with the PNSD measurements, is applied in the prediction of the cloud condensation nuclei (CCN) number concentration. The predicted CCN number concentration with the derived equivalent κ agrees well with the measured ones, especially at high supersaturations. The proposed calculation algorithm of κ with the f(RH) measurements is demonstrated to be reasonable and can be widely applied.
- ItemAerosol layer heights above Tajikistan during the CADEX campaign(Les Ulis : EDP Sciences, 2019) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Nazarov, Bakhron I.; Makhmudov, Abduvosit N.; Baars, Holger; Engelmann, Ronny; Ansmann, AlbertMineral dust influences climate and weather by direct and indirect effects. Surrounded by dust sources, Central Asian countries are affected by atmospheric mineral dust on a regular basis. Climate change effects like glacier retreat and desertification are prevalent in Central Asia as well. Therefore, the role of dust in the climate system in Central Asia needs to be clarified and quantified. During the Central Asian Dust EXperiment (CADEX) first lidar observations in Tajikistan were conducted. Long-term vertically resolved aerosol measurements were performed with the multiwavelength polarization Raman lidar PollyXT from March 2015 to August 2016 in Dushanbe, Tajikistan. In this contribution, a climatology of the aerosol layer heights is presented, which was retrieved from the 18-month lidar measurements. Automatic detection based on backscatter coefficient thresholds were used to retrieve the aerosol layer heights and yield similar layer heights as manual layer height determination. The significant aerosol layer height has a maximum in summer and a minimum in winter. The highest layers occurred in spring, but in summer uppermost layer heights above 6 km AGL are frequent, too. © 2019 The Authors, published by EDP Sciences.
- ItemAerosol measurements with a shipborne Sun-sky-lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean(Göttingen : Copernicus GmbH, 2019) Yin, Z.; Ansmann, A.; Baars, H.; Seifert, P.; Engelmann, R.; Radenz, M.; Jimenez, C.; Herzog, A.; Ohneiser, K.; Hanbuch, K.; Blarel, L.; Goloub, P.; Victori, S.; Maupin, F.A shipborne Sun-sky-lunar photometer of type CE318-T was tested during two trans-Atlantic cruises aboard the German research vessel Polarstern from 54ĝ N to 54ĝ S in May/June and December 2018. The continuous observations of the motion-stabilized shipborne CE318-T enabled the first-time observation of a full diurnal cycle of aerosol optical depth (AOD) and column-mean Ångström coefficient of a mixed dust-smoke episode. The latitudinal distribution of the AOD from the shipborne CE318-T, Raman lidar and MICROTOPS II shows the same trend with highest values in the dust belt from 0 to 20ĝ N and overall low values in the Southern Hemisphere. The linear-regression coefficients of determination between MICROTOPS II and the CE318-T were 0.988, 0.987, 0.994 and 0.994 for AODs at 380, 440, 500 and 870 nm and 0.896 for the Ångström exponent at 440-870 nm. The root-mean-squared differences of AOD at 380, 440, 500 and 870 nm were 0.015, 0.013, 0.010 and 0.009, respectively.
- ItemAerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn(Copenhagen : Blackwell Munksgaard, 1996) Covert, D.S.; Wiedensohler, A.; Aalto, P.; Heintzenberg, J.; Mcmurry, P.H.; Leck, C.Aerosol physics measurements made onboard the Swedish icebreaker Oden in the late Summer and early Autumn of 1991 during the International Arctic Ocean Expedition (IAOE-91) have provided the first data on the size distribution of particles in the Arctic marine boundary layer (MBL) that cover both the number and mass modes of the size range from 3 to 500 nm diameter. These measurements were made in conjunction with atmospheric gas and condensed phase chemistry measurements in an effort to understand a part of the ocean-atmosphere sulfur cycle. Analysis of the particle physics data showed that there were three distinct number modes in the submicrometric aerosol in the Arctic MBL. These modes had geometric mean diameters of around 170 nm. 45 nm and 14 nm referred to as accumulation, Aitken and ultrafine modes, respectively. There were clear minima in number concentrations between the modes that appeared at 20 to 30 nm and at 80 to 100 nm. The total number concentration was most frequently between 30 and 60 particles cm-3 with a mean value of around 100 particles cm-3, but the hourly average concentration varied over two to three orders of magnitude during the 70 days of the expedition. On average, the highest concentration was in the accumulation mode that contained about 45% of the total number, while the Aitken mode contained about 40%. The greatest variability was in the ultrafine mode concentration which is indicative of active, earby sources (nucleation from the gas phase) and sinks; the Aitken and accumulation mode concentrations were much less variable. The ultrafine mode was observed about two thirds of the time and was dominant 10% of the time. A detailed description and statistical analysis of the modal aerosol parameters is presented here.
- ItemAfforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects(Bristol : IOP Publishing, 2016) Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leo; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, AlexanderAmbitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions..
- ItemAfrican continental free trade area (AfCFTA): projected economic impact assessment under future warming in CMIP6(Bristol : IOP Publ., 2021) Arreyndip, Nkongho AyuketangLaunched on 1 January 2021, the African Continental Free Trade Area (AfCFTA) aims to bring together 1.3 billion people in a US$3.4 trillion economic bloc. The World Bank estimates that the AfCFTA could lift tens of millions of people out of poverty by 2035. Previous studies have shown that an increase in annual mean temperature can significantly affect economic growth. The AfCFTA economy will therefore be affected by future warming. However, without the AfCFTA, the impact of the increased annual average temperature on local economies could be severe, further depriving low-income African countries of economic recovery. To assess the damage to regional economic growth caused by future warming, trend analyses are conducted in the aggregated historical CFSR/NCEP and CMIP6 (GFDL-ESM4) climate projection data from 1979 to 2100 for different emission pathways over some major continental economic centres. The long-term impact of surface temperature increase on gross regional product (GRP) per capita growth rates are investigated by fitting CMIP6 daily and annual mean temperatures to a log-polynomial regression model. The results show that an increase in annual mean temperature will significantly affect the economic growth of low latitude and altitude regions compared to high latitude and altitude regions. Most emerging African economies and many member states of the African Union and AfCFTA are located in this low latitude zone. This makes the economies of the newly created AfCFTA very vulnerable to climate change. Several studies suggest that FTAs can help reduce the economic vulnerability of developing countries. The results presented here can contribute to better design and implementation of economic, trade and climate policies in the AfCFTA to mitigate the economic impacts of future warming.
- ItemAn AgMIP framework for improved agricultural representation in integrated assessment models(Bristol : IOP Publishing, 2017) Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.
- ItemAgricultural water balance in the polder Scheidgraben (Brandenburg)(Berlin ; Heidelberg : Springer, 2022) Drastig, Katrin; Schmidtke, Lea; Jacobs, Helen; Recker, MartinA predicted increase in water demand for irrigated agriculture in the wake of climate change, and the threat of more extensive periods of drought, poses a challenge to the availability of groundwater resources in Germany. In this study, water availability and water withdrawal for agricultural irrigation are calculated for the polder Scheidgraben (Brandenburg). The agricultural water demand in the Scheidgraben polder is modeled using the AgroHyd Farmmodel. Climate data, soil data, plant-specific data and operating data of all farms in the polder are used as a data basis. In the dry years 2018 and 2019, more than 20% of the potentially available water in the Scheidgraben polder was used for irrigation. The use of water resources by agricultural water withdrawals in the area may increasingly be a problem in the future. In some regions of Brandenburg, region-specific calculations for water management are necessary due to a wide range of conflicts and thus steadily increasing challenges for water authorities.