The degrees of freedom of partial least squares regression

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1487
dc.contributor.authorKrämer, Nicole
dc.contributor.authorSugiyama, Masashi
dc.date.accessioned2016-03-24T17:38:35Z
dc.date.available2019-06-28T08:04:55Z
dc.date.issued2010
dc.description.abstractThe derivation of statistical properties for Partial Least Squares regression can be a challenging task. The reason is that the construction of latent components from the predictor variables also depends on the response variable. While this typically leads to good performance and interpretable models in practice, it makes the statistical analysis more involved. In this work, we study the intrinsic complexity of Partial Least Squares Regression. Our contribution is an unbiased estimate of its Degrees of Freedom. It is defined as the trace of the first derivative of the fitted values, seen as a function of the response. We establish two equivalent representations that rely on the close connection of Partial Least Squares to matrix decompositions and Krylov subspace techniques. We show that the Degrees of Freedom depend on the collinearity of the predictor variables: The lower the collinearity is, the higher the Degrees of Freedom are. In particular, they are typically higher than the naive approach that defines the Degrees of Freedom as the number of components. Further, we illustrate that the Degrees of Freedom are useful for model selection. Our experiments indicate that the model complexity based on the Degrees of Freedom estimate is lower than the model complexity of the naive approach. In terms of prediction accuracy, both methods obtain the same accuracy as cross-validationeng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/3319
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2246
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherregressioneng
dc.subject.othermodel selectioneng
dc.subject.otherPartial Least Squareseng
dc.subject.otherDegrees of Freedomeng
dc.titleThe degrees of freedom of partial least squares regressioneng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
664536662.pdf
Size:
415.71 KB
Format:
Adobe Portable Document Format
Description: