Search Results

Now showing 1 - 6 of 6
  • Item
    DNA Nanotechnology Enters Cell Membranes
    (Weinheim : Wiley-VCH, 2019) Huo, Shuaidong; Li, Hongyan; Boersma, Arnold J.; Herrmann, Andreas
    DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.
  • Item
    Making Sense of Complex Carbon and Metal/Carbon Systems by Secondary Electron Hyperspectral Imaging
    (Weinheim : Wiley-VCH, 2019) Abrams, Kerry J.; Dapor, Maurizio; Stehling, Nicola; Azzolini, Martina; Kyle, Stephan J.; Schäfer, Jan; Quade, Antje; Mika, Filip; Kratky, Stanislav; Pokorna, Zuzana; Konvalina, Ivo; Mehta, Danielle; Black, Kate; Rodenburg, Cornelia
    Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.
  • Item
    How modelers construct energy costs: Discursive elements in Energy System and Integrated Assessment Models
    (Amsterdam [u.a.] : Elsevier, 2019) Ellenbeck, Saskia; Lilliestam, Johan
    Energy system and integrated assessment models (IAMs) are widely used techniques for knowledge production to assess costs of future energy pathways and economic effects of energy/climate policies. With their increased use for policy assessment and increasing dominance in energy policy science, such models attract increasing criticism. In the last years, such models – especially the highly complex IAMs, have been accused of being arbitrary. We challenge this view and argue that the models and their assumptions are not arbitrary, but they are normative and reflect the modelers’ understanding of the functioning of the society, the environment-societal relations and respective appropriate scientific tools and theories – in short: models are shaped by discursive structures, reproducing and reinforcing particular societal discourses. We identify 9 distinct paths, all relating to crucial model decisions, via which discourses enter models: for each of these decisions, there are multiple “correct” answers, in the sense that they can be justified within a particular discourse. We conclude that decisions of modelers about the structure and about assumptions in energy modeling are not arbitrary but contingent to the discursive context the modeler is related to. This has two implications. First, modelers and consumers of model output must reflect on what a model and its assumptions represent, and not only whether are they correct. Second, models hardly need to add more (mathematical) complexity, but rather be reduced and simplified so that they can continue to fulfill their main function as formalized and powerful instruments for thought experiments about future energy pathways.
  • Item
    Dynamics of rural livelihoods and rainfall variability in Northern Ethiopian Highlands
    (Amsterdam [u.a.] : Elsevier, 2019) Adamseged, Muluken E.; Frija, Aymen; Thiel, Andreas
    [No abstract available]
  • Item
    Challenges of data availability: Analysing the water-energy nexus in electricity generation
    (Amsterdam [u.a.] : Elsevier, 2019) Larsen, M.A.D.; Petrovic, S.; Engström, R.E.; Drews, M.; Liersch, S.; Karlsson, K.B.; Howells, M.
    Water is paramount for the operation of energy systems, for securing food supply and for the industry and municipalities. Intersectoral competition for water resources can negatively affect water scarce regions by e.g. power plants shutdowns, poor agricultural yields, and lack of potable water. Future economic and population growth as well as climate change is likely to exacerbate these patterns. However, models used for energy system management and planning in general do not properly include water availability which can lead to improper representations of water-energy interlinkages. The paper initially highlights the water usage rates of current technologies within electricity generation and technologies with a potential to reduce water usage, electricity consumption or GHG emissions. Secondly, the paper presents currently available data on current and future projected water resources as well as data on energy statistics relevant to water-energy nexus studies. Thirdly, implementation cases are presented showing examples of water-energy nexus studies for the data presented. Finally, the paper highlights main challenges in studying the linkage between water and energy. We find a substantial gap in the general availability and quality of regional and global data for detailed quantitative analyses and also identify a need for standardization of formats and data collection methodologies across data and disciplines. An effort towards a coordinated, and sustained open-access data framework with energy sector water usage at fine spatio-temporal scales alongside hydro-climatic observation and model data using common forcings and scenarios for future projections (of climate, socio-economy and technology) is therefore recommended for future water-energy nexus studies. © 2019 The Authors
  • Item
    Energy system changes in 1.5 °C, well below 2 °C and 2 °C scenarios
    (Amsterdam : Elsevier, 2019) Gambhir, Ajay; Rogelj, Joeri; Luderer, Gunnar; Few, Sheridan; Napp, Tamaryn
    Meeting the Paris Agreement's goal to limit global warming to well below 2 °C and pursuing efforts towards 1.5 °C is likely to require more rapid and fundamental energy system changes than the previously-agreed 2 °C target. Here we assess over 200 integrated assessment model scenarios which achieve 2 °C and well-below 2 °C targets, drawn from the IPCC's fifth assessment report database combined with a set of 1.5 °C scenarios produced in recent years. We specifically assess differences in a range of near-term indicators describing CO2 emissions reductions pathways, changes in primary energy and final energy across the economy's major sectors, in addition to more detailed metrics around the use of carbon capture and storage (CCS), negative emissions, low-carbon electricity and hydrogen. © 2018 The Authors