Search Results

Now showing 1 - 3 of 3
  • Item
    Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities
    (Katlenburg-Lindau : European Geosciences Union, 2021) Cuesta-Mosquera, Andrea; Močnik, Griša; Drinovec, Luka; Müller, Thomas; Pfeifer, Sascha; Minguillón, María Cruz; Briel, Björn; Buckley, Paul; Dudoitis, Vadimas; Fernández-García, Javier; Fernández-Amado, María; Ferreira De Brito, Joel; Riffault, Veronique; Flentje, Harald; Heffernan, Eimear; Kalivitis, Nikolaos; Kalogridis, Athina-Cerise; Keernik, Hannes; Marmureanu, Luminita; Luoma, Krista; Marinoni, Angela; Pikridas, Michael; Schauer, Gerhard; Serfozo, Norbert; Servomaa, Henri; Titos, Gloria; Yus-Díez, Jesús; Zioła, Natalia; Wiedensohler, Alfred
    Aerosolized black carbon is monitored worldwide to quantify its impact on air quality and climate. Given its importance, measurements of black carbon mass concentrations must be conducted with instruments operating in qualitychecked and ensured conditions to generate data which are reliable and comparable temporally and geographically. In this study, we report the results from the largest characterization and intercomparison of filter-based absorption photometers, the Aethalometer model AE33, belonging to several European monitoring networks. Under controlled laboratory conditions, a total of 23 instruments measured mass concentrations of black carbon from three wellcharacterized aerosol sources: synthetic soot, nigrosin particles, and ambient air from the urban background of Leipzig, Germany. The objective was to investigate the individual performance of the instruments and their comparability; we analyzed the response of the instruments to the different aerosol sources and the impact caused by the use of obsolete filter materials and the application of maintenance activities. Differences in the instrument-to-instrument variabilities from equivalent black carbon (eBC) concentrations reported at 880 nm were determined before maintenance activities (for soot measurements, average deviation from total least square regression was-2.0% and the range-16% to 7 %; for nigrosin measurements, average deviation was 0.4% and the range-15% to 17 %), and after they were carried out (for soot measurements, average deviation was-1.0% and the range-14% to 8 %; for nigrosin measurements, the average deviation was 0.5%and the range-12%to 15 %). The deviations are in most of the cases explained by the type of filter material employed by the instruments, the total particle load on the filter, and the flow calibration. The results of this intercomparison activity show that relatively small unit-to-unit variability of AE33-based particle light absorbing measurements is possible with wellmaintained instruments. It is crucial to follow the guidelines for maintenance activities and the use of the proper filter tape in the AE33 to ensure high quality and comparable black carbon (BC) measurements among international observational networks. © 2021 Author(s). This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Optical properties of coated black carbon aggregates: numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme
    (Katlenburg-Lindau : European Geosciences Union, 2021) Romshoo, Baseerat; Müller, Thomas; Pfeifer, Sascha; Saturno, Jorge; Nowak, Andreas; Ciupek, Krzysztof; Quincey, Paul; Wiedensohler, Alfred
    The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent ageing involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the optical properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how optical properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFA optical properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The optical properties are calculated using the multiple-sphere T-matrix (MSTM) method. For the first time, the modelled optical properties of BC are expressed in terms of mobility diameter (Dmob), making the results more relevant and relatable for ambient and laboratory BC studies. Amongst size, morphology, and composition, all the optical properties showed the highest variability with changing size. The cross sections varied from 0.0001 to 0.1 μm2 for BCFA Dmob ranging from 24 to 810nm. It has been shown that MACBC and single-scattering albedo (SSA) are sensitive to morphology, especially for larger particles with Dmobg > 100 nm. Therefore, while using the simplified core-shell representation of BC in global models, the influence of morphology on radiative forcing estimations might not be adequately considered. The Ångström absorption exponent (AAE) varied from 1.06 up to 3.6 and increased with the fraction of organics (forganics). Measurement results of AAE ≫1 are often misinterpreted as biomass burning aerosol, it was observed that the AAE of purely black carbon particles can be ≫1 in the case of larger BC particles. The values of the absorption enhancement factor (Eλ) via coating were found to be between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres and from MSTM for coated BCFAs. Mie-calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive to modifications in morphology and composition. The black carbon radiative forcing FTOA (Wgm-2) decreases up to 61% as the BCFA becomes more compact, indicating that global model calculations should account for changes in morphology. A decrease of more than 50% in FTOA was observed as the organic content of the particle increased up to 90%. The changes in the ageing factors (composition and morphology) in tandem result in an overall decrease in the FTOA. A parameterization scheme for optical properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross sections (extinction, absorption, and scattering), single-scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning an extensive parameter space, the developed parameterization scheme showed promisingly high accuracy up to 98% for the cross sections, 97% for single-scattering albedos (SSAs), and 82% for the asymmetry parameter (g). © 2021 The Author(s).
  • Item
    Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kecorius, Simonas; Madueño, Leizel; Löndahl, Jakob; Vallar, Edgar; Galvez, Maria Cecilia; Idolor, Luisito F.; Gonzaga-Cayetano, Mylene; Müller, Thomas; Birmili, Wolfram; Wiedensohler, Alfred
    Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM 10 and PM 2.5 measures. © 2019