Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment

2022, Gemmer, Lea, Hu, Qiwei, Niebuur, Bart-Jan, Kraus, Tobias, Balzer, Bizan N., Gallei, Markus

Functional amphiphilic block copolymers (BCPs) are versatile, smart, and promising materials that are often used as soft templates in nanoscience. BCPs generally feature the capability of microphase-separation leading to various interesting morphologies at the nanometer length scale. Materials derived from BCPs can be converted into porous structures while retaining the underlying morphology of the matrix material. Here, a convenient and scalable approach for the fabrication of porous functional polyvinylpyridines (P2VP) is introduced. The BCP polyisoprene-block-P2VP (PI-b-P2VP) is obtained via sequential anionic polymerization of the respective monomers and used to form either BCP films in the bulk state or a soft template in a composite with cellulose fibers. Cross-linking of the BCPs with 1,4-diiodobutane is conducted and subsequently PI domains are selectively degraded inside the materials using ozone, while preserving the porous and tailor-made P2VP nanostructure. Insights into the feasibility of the herein presented strategy is supported by various polymer characterization methods comprising nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). The resulting bulk- and composite materials are investigated regarding their morphology and pore formation by scanning electron microscopy (SEM), atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). Furthermore, chemical conversions were examined by energy dispersive X-ray spectroscopy (EDS), attenuated total reflection Fourier-transformation infrared spectroscopy (ATR-FTIR) and water contact angle (WCA) measurements. By this convenient strategy the fabrication of functional porous P2VP in the bulk state and also within sustainable cellulose composite materials is shown, paving the synthetic strategy for the generation of a new family of stimuli-responsive sustainable materials.

Loading...
Thumbnail Image
Item

Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation

2023, Gemmer, Lea, Niebuur, Bart-Jan, Dietz, Christian, Rauber, Daniel, Plank, Martina, Frieß, Florian V., Presser, Volker, Stark, Robert W., Kraus, Tobias, Gallei, Markus

The development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM).

Loading...
Thumbnail Image
Item

Surface polarization, field homogeneity, and dielectric breakdown in ordered and disordered nanodielectrics based on gold-polystyrene superlattices

2023, Buchheit, Roman, Niebuur, Bart-Jan, González-García, Lola, Kraus, Tobias

Hybrid dielectrics were prepared from dispersions of nanoparticles with gold cores (diameters from 2.9 nm to 8.2 nm) and covalently bound thiol-terminated polystyrene shells (5000 Da and 11 000 Da) in toluene. Their microstructure was investigated with small angle X-ray scattering and transmission electron microscopy. The particles arranged in nanodielectric layers with either face-centered cubic or random packing, depending on the ligand length and core diameter. Thin film capacitors were prepared by spin-coating inks on silicon substrates, contacted with sputtered aluminum electrodes, and characterized with impedance spectroscopy between 1 Hz and 1 MHz. The dielectric constants were dominated by polarization at the gold-polystyrene interfaces that we could precisely tune via the core diameter. There was no difference in the dielectric constant between random and supercrystalline particle packings, but the dielectric losses depended on the layer structure. A model that combines Maxwell-Wagner-Sillars theory and percolation theory described the relationship of the specific interfacial area and the dielectric constant quantitatively. The electric breakdown of the nanodielectric layers sensitively depended on particle packing. A highest breakdown field strength of 158.7 MV m−1 was found for the sample with 8.2 nm cores and short ligands that had a face-centered cubic structure. Breakdown apparently is initiated at the microscopic maxima of the electric field that depends on particle packing. The relevance of the results for industrially produced devices was demonstrated on inkjet printed thin film capacitors with an area of 0.79 mm2 on aluminum coated PET foils that retained their capacity of 1.24 ± 0.01 nF@10 kHz during 3000 bending cycles.

Loading...
Thumbnail Image
Item

Nanoscale disintegration kinetics of mesoglobules in aqueous poly(N-isopropylacrylamide) solutions revealed by small-angle neutron scattering and pressure jumps

2021, Niebuur, Bart-Jan, Chiappisi, Leonardo, Jung, Florian A., Zhang, Xiaohan, Schulte, Alfons, Papadakis, Christine M.

Identification and control of the disintegration mechanism of polymer nanoparticles are essential for applications in transport and release including polymer delivery systems. Structural changes during the disintegration of poly(N-isopropylacrylamide) (PNIPAM) mesoglobules in aqueous solution are studied in situ and in real time using kinetic small-angle neutron scattering with a time resolution of 50 ms. Simultaneously length scales between 1 and 100 nm are resolved. By initiating phase separation through fast pressure jumps across the coexistence line, 3 wt% PNIPAM solutions are rapidly brought into the one-phase state. Starting at the same temperature (35.1 °C) and pressure (17 MPa) the target pressure is varied over the range 25–48 MPa, allowing to systematically alter the osmotic pressure of the solvent within the mesoglobules. Initially, the mesoglobules have a radius of gyration of about 80 nm and contain a small amount of water. Two disintegration mechanisms are identified: (i) for target pressures close to the coexistence line, single polymers are released from the surface of the mesoglobules, and the mesoglobules decrease in size, which takes ∼30 s. (ii) For target pressures more distant from the coexistence line, the mesoglobules are swollen by water, and subsequently the chains become more and more loosely associated. In this case, disintegration proceeds within less than 10 s, controlled by the osmotic pressure of the solvent.