Search Results

Now showing 1 - 10 of 34
Loading...
Thumbnail Image
Item

Handreichung Urheberrecht und Datenschutz

2023, Blumtritt, Ute, Euler, Ellen, Fadeevy, Yuliya, Pohle, Jörg, Rack, Fabian, Wrzesinski, Marcel

Die vorliegende Handreichung adressiert wissenschaftsgeleitete Zeitschriften sowie herausgebende Einrichtungen. Sie sollen in die Lage versetzt werden, erste urheberrechtliche wie datenschutzrechtliche Fragen zu beantworten und dabei Qualitätsstandards einzuhalten. Dieser Text ersetzt keine Rechtsberatung, sondern bietet grundsätzliche Informationen, gibt Empfehlungen zum Weiterlesen für klassische Fragestellungen und verweist auf gelungene Beispiele im weiteren Feld des wissenschaftsgeleiteten Publizierens.

Loading...
Thumbnail Image
Item

A Data Model for Linked Stage Graph and the Historical Performing Arts Domain

2023, Tietz, Tabea, Bruns, Oleksandra, Sack, Harald, Bikakis, Antonis, Ferrario, Roberta, Jean, Stéphane, Markhoff, Béatrice, Mosca, Alessandro, Nicolosi Asmundo, Marianna

The performing arts are complex, dynamic and embedded into societal and political systems. Providing means to research historical performing arts data is therefore crucial for understanding our history and culture. However, currently no commonly accepted ontology for historical performing arts data exists. On the example of the Linked Stage Graph, this position paper presents the ongoing process of creating an application-driven and efficient data model by leveraging and building upon existing standards and ontologies like CIDOC-CRM, FRBR, and FRBRoo.

Loading...
Thumbnail Image
Item

Detecting Cross-Language Plagiarism using Open Knowledge Graphs

2021, Stegmüller, Johannes, Bauer-Marquart, Fabian, Meuschke, Norman, Ruas, Terry, Schubotz, Moritz, Gipp, Bela, Zhang, Chengzhi, Mayr, Philipp, Lu, Wie, Zhang, Yi

Identifying cross-language plagiarism is challenging, especially for distant language pairs and sense-for-sense translations. We introduce the new multilingual retrieval model Cross-Language Ontology-Based Similarity Analysis (CL-OSA) for this task. CL-OSA represents documents as entity vectors obtained from the open knowledge graph Wikidata. Opposed to other methods, CL-OSA does not require computationally expensive machine translation, nor pre-training using comparable or parallel corpora. It reliably disambiguates homonyms and scales to allow its application toWebscale document collections. We show that CL-OSA outperforms state-of-the-art methods for retrieving candidate documents from five large, topically diverse test corpora that include distant language pairs like Japanese-English. For identifying cross-language plagiarism at the character level, CL-OSA primarily improves the detection of sense-for-sense translations. For these challenging cases, CL-OSA’s performance in terms of the well-established PlagDet score exceeds that of the best competitor by more than factor two. The code and data of our study are openly available.

Loading...
Thumbnail Image
Item

Data Steward Service Center (DSSC): FAIRagro RDM-Expertise Hub

2023, Svoboda, Nikolai, Vedder, Lucia, Böhm, Franziska, Möller, Markus, Rey-Mazón, Elena, Schmidt, Marcus, Lindstädt, Birte, Stahl, Ulrike

The Data Steward Service Center (DSSC) is the central institution within FAIRagro to develop data management tools based on the needs of the scientific community. The DSSC organizes the continuous exchange of RDM knowledge and experience with other institutions, channels user requests from the community, and transfers knowledge from the FAIRagro task areas to the FAIRagro data stewards. FAIRagro data stewards are experts in the field of RDM for agrosystems research supervising and will train data curators in our community. Data stewards have core competencies in research data management (e.g., cross-scale from genes, phenomics, management to region; sensitive data, remote sensing, time series, plant, soil and related FAIRagro data). Knowledge and expertise is pooled to provide the full range of expertise to the community in one place to foster the coalescence of the community. The DSSC is headed by a coordinator and will house five data stewards, who are active in the community e.g. train data curators, give legal support. In the course of the project, further institutional or project data stewards will be integrated and the pool of experts will be further expanded. The network to the other NFDI consortia is continuously growing.

Loading...
Thumbnail Image
Item

Modelling Archival Hierarchies in Practice: Key Aspects and Lessons Learned

2021, Vafaie, Mahsa, Bruns, Oleksandra, Pilz, Nastasja, Dessì, Danilo, Sack, Harald, Sumikawa, Yasunobu, Ikejiri, Ryohei, Doucet, Antoine, Pfanzelter, Eva, Hasanuzzaman, Mohammed, Dias, Gaël, Milligan, Ian, Jatowt, Adam

An increasing number of archival institutions aim to provide public access to historical documents. Ontologies have been designed, developed and utilised to model the archival description of historical documents and to enable interoperability between different information sources. However, due to the heterogeneous nature of archives and archival systems, current ontologies for the representation of archival content do not always cover all existing structural organisation forms equallywell. After briefly contextualising the heterogeneity in the hierarchical structure of German archives, this paper describes and evaluates differences between two archival ontologies, ArDO and RiC-O, and their approaches to modelling hierarchy levels and archive dynamics.

Loading...
Thumbnail Image
Item

On the Impact of Temporal Representations on Metaphor Detection

2022, Giorgio Ottolina, Matteo Palmonari, Manuel Vimercati, Mehwish Alam, Calzolari, Nicoletta, Béchet, Frédéric, Blache, Philippe, Choukri, Khalid, Cieri, Christopher, Declerck, Thierry, Goggi, Sara, Isahara, Hitoshi, Maegaard, Bente, Mariani, Joseph, Mazo, Hélène, Odijk, Jan, Piperidis, Stelios

State-of-the-art approaches for metaphor detection compare their literal - or core - meaning and their contextual meaning using metaphor classifiers based on neural networks. However, metaphorical expressions evolve over time due to various reasons, such as cultural and societal impact. Metaphorical expressions are known to co-evolve with language and literal word meanings, and even drive, to some extent, this evolution. This poses the question of whether different, possibly time-specific, representations of literal meanings may impact the metaphor detection task. To the best of our knowledge, this is the first study that examines the metaphor detection task with a detailed exploratory analysis where different temporal and static word embeddings are used to account for different representations of literal meanings. Our experimental analysis is based on three popular benchmarks used for metaphor detection and word embeddings extracted from different corpora and temporally aligned using different state-of-the-art approaches. The results suggest that the usage of different static word embedding methods does impact the metaphor detection task and some temporal word embeddings slightly outperform static methods. However, the results also suggest that temporal word embeddings may provide representations of the core meaning of the metaphor even too close to their contextual meaning, thus confusing the classifier. Overall, the interaction between temporal language evolution and metaphor detection appears tiny in the benchmark datasets used in our experiments. This suggests that future work for the computational analysis of this important linguistic phenomenon should first start by creating a new dataset where this interaction is better represented.

Loading...
Thumbnail Image
Item

Exploring the Impact of Negative Sampling on Patent Citation Recommendation

2023, Dessi, Rima, Aras, Hidir, Alam, Mehwish

Due to the increasing number of patents being published every day, patent citation recommendations have become one of the challenging tasks. Since patent citations may lead to legal and economic consequences, patent recommendations are even more challenging as compared to scientific article citations. One of the crucial components of the patent citation algorithm is negative sampling which is also a part of many other tasks such as text classification, knowledge graph completion, etc. This paper, particularly focuses on proposing a transformer-based ranking model for patent recommendations. It further experimentally compares the performance of patent recommendations based on various state-of-the-art negative sampling approaches to measure and compare the effectiveness of these approaches to aid future developments. These experiments are performed on a newly collected dataset of US patents from Google patents.

Loading...
Thumbnail Image
Item

DDB-KG: The German Bibliographic Heritage in a Knowledge Graph

2021, Tan, Mary Ann, Tietz, Tabea, Bruns, Oleksandra, Oppenlaender, Jonas, Dessì, Danilo, Harald, Sack, Sumikawa, Yasunobu, Ikejiri, Ryohei, Doucet, Antoine, Pfanzelter, Eva, Hasanuzzaman, Mohammed, Dias, Gaël, Milligan, Ian, Jatowt, Adam

Under the German government’s initiative “NEUSTART Kultur”, the German Digital Library or Deutsche Digitale Bibliothek (DDB) is undergoing improvements to enhance user-experience. As an initial step, emphasis is placed on creating a knowledge graph from the bibliographic record collection of the DDB. This paper discusses the challenges facing the DDB in terms of retrieval and the solutions in addressing them. In particular, limitations of the current data model or ontology to represent bibliographic metadata is analyzed through concrete examples. This study presents the complete ontological mapping from DDB-Europeana Data Model (DDB-EDM) to FaBiO, and a prototype of the DDB-KG made available as a SPARQL endpoint. The suitabiliy of the target ontology is demonstrated with SPARQL queries formulated from competency questions.

Loading...
Thumbnail Image
Item

Designing Intelligent Systems for Online Education: Open Challenges and Future Directions

2021, Dessì, Danilo, Käser, Tanja, Marras, Mirko, Popescu, Elvira, Sack, Harald, Dessì, Danilo, Käser, Tanja, Marras, Mirko, Popescu, Elvira, Sack, Harald

The design and delivering of platforms for online education is fostering increasingly intense research. Scaling up education online brings new emerging needs related with hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely, as examples. However, with the impressive progress of the data mining and machine learning fields, combined with the large amounts of learning-related data and high-performance computing, it has been possible to gain a deeper understanding of the nature of learning and teaching online. Methods at the analytical and algorithmic levels are constantly being developed and hybrid approaches are receiving an increasing attention. Recent methods are analyzing not only the online traces left by students a posteriori, but also the extent to which this data can be turned into actionable insights and models, to support the above needs in a computationally efficient, adaptive and timely way. In this paper, we present relevant open challenges lying at the intersection between the machine learning and educational communities, that need to be addressed to further develop the field of intelligent systems for online education. Several areas of research in this field are identified, such as data availability and sharing, time-wise and multi-modal data modelling, generalizability, fairness, explainability, interpretability, privacy, and ethics behind models delivered for supporting education. Practical challenges and recommendations for possible research directions are provided for each of them, paving the way for future advances in this field.

Loading...
Thumbnail Image
Item

Toward a Comparison Framework for Interactive Ontology Enrichment Methodologies

2022, Vrolijk, Jarno, Reklos, Ioannis, Vafaie, Mahsa, Massari, Arcangelo, Mohammadi, Maryam, Rudolph, Sebastian, Fu, Bo, Lambrix, Patrick, Pesquita, Catia

The growing demand for well-modeled ontologies in diverse application areas increases the need for intuitive interaction techniques that support human domain experts in ontology modeling and enrichment tasks, such that quality expectations are met. Beyond the correctness of the specified information, the quality of an ontology depends on its (relative) completeness, i.e., whether the ontology contains all the necessary information to draw expected inferences. On an abstract level, the Ontology Enrichment problem consists of identifying and filling the gap between information that can be logically inferred from the ontology and the information expected to be inferable by the user. To this end, numerous approaches have been described in the literature, providing methodologies from the fields of Formal Semantics and Automated Reasoning targeted at eliciting knowledge from human domain experts. These approaches vary greatly in many aspects and their applicability typically depends on the specifics of the concrete modeling scenario at hand. Toward a better understanding of the landscape of methodological possibilities, this position paper proposes a framework consisting of multiple performance dimensions along which existing and future approaches to interactive ontology enrichment can be characterized. We apply our categorization scheme to a selection of methodologies from the literature. In light of this comparison, we address the limitations of the methods and propose directions for future work.