7 results
Search Results
Now showing 1 - 7 of 7
- ItemHuman alterations of the terrestrial water cycle through land management(Göttingen : Copernicus GmbH, 2008) Rost, S.; Gerten, D.; Heyder, U.This study quantifies current and potential future changes in transpiration, evaporation, interception loss and river discharge in response to land use change, irrigation and climate change, by performing several distinct simulations within the consistent hydrology and biosphere modeling framework LPJmL (Lund-Potsdam-Jena managed Land). We distinguished two irrigation simulations: a water limited one in which irrigation was restricted by local renewable water resources (ILIM), and a potential one in which no such limitation was assumed but withdrawals from deep groundwater or remote rivers allowed (IPOT). We found that the effect of historical land use change as compared to potential natural vegetation was pronounced, including a reduction in interception loss and transpiration by 25.9% and 10.6%, respectively, whereas river discharge increased by 6.6% (climate conditions of 1991-2000). Furthermore, we estimated that about 1170km3yr-1 of irrigation water could be withdrawn from local renewable water resources (in ILIM), which resulted in a reduction of river discharge by 1.5%. However, up to 1660km3yr-1 of water withdrawals were required in addition under the assumption that optimal growth of irrigated crops was sustained (IPOT), which resulted in a slight net increase in global river discharge by 2.0% due to return flows. Under the HadCM3 A2 climate and emission scenario, climate change alone will decrease total evapotranspiration by 1.5% and river discharge by 0.9% in 2046-2055 compared to 1991-2000 average due to changes in precipitation patterns, a decrease in global precipitation amount, and the net effect of CO2 fertilization. A doubling of agricultural land in 2046-2055 compared to 1991-2000 average as proposed by the IMAGE land use change scenario will result in a decrease in total evapotranspiration by 2.5% and in an increase in river discharge by 3.9%. That is, the effects of land use change in the future will be comparable in magnitude to the effects of climate change in this particular scenario. On present irrigated areas future water withdrawal will increase especially in regions where climate changes towards warmer and dryer conditions will be pronounced.
- ItemHow tight are the limits to land and water use? - Combined impacts of food demand and climate change(München : European Geopyhsical Union, 2005) Lotze-Campen, H.; Lucht, W.; Müller, C.; Bondeau, A.; Smith, P.In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on regional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be expanded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system.
- ItemThe millennial atmospheric lifetime of anthropogenic CO2(Dordrecht [u.a.] : Springer, 2008) Archer, D.; Brovkin, V.The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere. © 2008 The Author(s).
- ItemStern's Review and Adam's fallacy(Dordrecht [u.a.] : Springer, 2008) Jaeger, C.; Schellnhuber, H.J.; Brovkin, V.The Stern Review has played an enormous role in making the world of business aware of the challenge of long-term climate change. In order to make real progress on the basis of this awareness, it is important to pay attention to the difference between human suffering and losses of gross domestic product (GDP). The Review has compared climate change to experiences of suffering like World War I. That war, however, hardly affected global GDP. The long-term damages to be expected from business-as-usual greenhouse gas emissions include loss of the coastal cities of the world over the next millennia. This would be an act of unprecedented barbarism, regardless of whether it would slow down economic growth or perhaps even accelerate it. Business leaders worried about climate change need to pay attention to the tensions between ethical and economic concerns. Otherwise, a credibility crisis threatens global climate policy. An important step to establish the credibility needed for effective climate policy will be to gradually move towards a regime where emission permits are auctioned, not handed out as hidden subsidies. The revenues generated by permit auctions should be used to establish a global system of regional climate funds. © 2008 The Author(s).
- ItemA simple conceptual model of abrupt glacial climate events(Göttingen : Copernicus GmbH, 2007) Braun, H.; Ganopolski, A.; Christl, M.; Chialvo, D.R.Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events) to a few simple principles, namely (i) the existence of two different climate states, (ii) a threshold process and (iii) an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2), in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance) and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations). We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.
- ItemForced versus coupled dynamics in Earth system modelling and prediction(Göttingen : Copernicus GmbH, 2005) Knopf, B.; Held, H.; Schellnhuber, H.J.We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation), this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i) a low-dimensional coupled atmosphere-ocean simulator, and (ii) a replica-like simulator embracing corresponding components. Whereas in general the forced version (ii) is able to mimic its fully coupled counterpart (i), we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also find it to be governed by a scaling law that allows us to estimate the probability of artificial predictive skill. In addition to artificial predictability we observe artificial bistability for the forced version, which has not been reported so far. The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted.
- ItemClimatic response to anthropogenic sulphate aerosols versus well-mixed greenhouse gases from 1850 to 2000 AD in CLIMBER-2(Abingdon : Taylor and Francis Ltd., 2008) Bauer, E.; Petoukhov, V.; Ganopolski, A.; Eliseev, A.V.The Earth system model CLIMBER-2 is extended by a scheme for calculating the climatic response to anthropogenic sulphur dioxide emissions. The scheme calculates the direct radiative forcing, the first indirect cloud albedo effect, and the second indirect cloud lifetime effect induced by geographically resolved sulphate aerosol burden. The simulated anthropogenic sulphate aerosol burden in the year 2000 amounts to 0.47 TgS. The best guesses for the radiative forcing due to the direct effect are -0.4 W m-2 and for the decrease in short-wave radiation due to all aerosol effects -0.8 W m-2. The simulated global warming by 1 K from 1850 to 2000 caused by anthropogenic greenhouse gases reduces to 0.6 K when the sulphate aerosol effects are included. The model's hydrological sensitivity of 4%/K is decreased by the second indirect effect to 0.8%/K. The quality of the geographically distributed climatic response to the historic emissions of sulphur dioxide and greenhouse gases makes the extended model relevant to computational efficient investigations of future climate change scenarios.