5 results
Search Results
Now showing 1 - 5 of 5
- ItemEvaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case(München : European Geopyhsical Union, 2011) Wang, Z.B.; Hu, M.; Yue, D.L.; Zheng, J.; Zhang, R.Y.; Wiedensohler, A.; Wu, Z.J.; Nieminen, T.; Boy, M.New particle formation (NPF) is considered as an important mechanism for gas-to-particle transformation, and gaseous sulfuric acid is believed as a crucial precursor. Up to now few field-based studies on nucleation mechanisms and the role of sulfuric acid were conducted in China. In this study, simultaneously measurements of particle number size distributions and gaseous sulfuric acid concentrations were performed from July to September in 2008. Totally, 22 new particle formation events were observed during the entire 85 campaign days. The results show that in the case of both higher source and sink values, the result of the competition between source and sink is more likely the key limiting factor to determine the observation of NPF events in Beijing. The concentrations of gaseous sulfuric acid show good correlations with freshly nucleated particles (N3-6 and formation rates (J3 and J1.5. The power-law relationship between H2SO4 concentration and N3-6 or J is adopted to explore the nucleation mechanism. The exponents are showed a great range (from 1 to 7). More than half of the NPF events exhibit an exponent larger than 2.5. For these cases, the thermodynamic process works better than the activation or kinetic nucleation theories to explain the nucleation events in urban atmosphere of Beijing.
- ItemCharacteristics of regional new particle formation in urban and regional background environments in the North China Plain(München : European Geopyhsical Union, 2013) Wang, Z.B.; Hu, M.; Sun, J.Y.; Wu, Z.J.; Yue, D.L.; Shen, X.J.; Zhang, Y.M.; Pei, X.Y.; Cheng, Y.F.; Wiedensohler, A.Long-term measurements of particle number size distributions were carried out both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation (NPF) events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation events started was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 and 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that precursors were much more abundant in the polluted urban environment. Different from the observations in cleaner environments, the background conditions of the observed particle homogeneous nucleation events in the North China Plain could be characterized as the co-existing of a stronger source of precursor gases and a higher condensational sink of pre-existing aerosol particles. Secondary aerosol formation following nucleation events results in an increase of particle mass concentration, particle light scattering coefficient, and cloud condensation nuclei (CCN) number concentration, with consequences on visibility, radiative effects, and air quality. Typical regional NPF events with significant particle nucleation rates and subsequent particle growth over a sufficiently long time period at both sites were chosen to investigate the influence of NPF on the number concentration of "potential" CCN. As a result, the NPF and the subsequent condensable growth increased the CCN number concentration in the North China Plain by factors in the range from 5.6 to 8.7. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration was more than 50%, to which more attention should be drawn in regional and global climate modeling, especially in the polluted urban areas.
- ItemCloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles(München : European Geopyhsical Union, 2011) Rose, D.; Gunthe, S.S.; Su, H.; Garland, R.M.; Yang, H.; Berghof, M.; Cheng, Y.F.; Wehner, B.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Hu, M.; Zhang, Y.; Andreae, M.O.; Pöschl, U.Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN) activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS), a volatility tandem differential mobility analyzer (VTDMA), and a continuous-flow CCN counter (DMT-CCNC). The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κa) could be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by the AMS: κa,p=κorg·forg + κinorg·finorg. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κorg≈0.1 and κinorg≈0.6. The campaign average κa values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while forg decreased with particle size. At ~50 nm, forg was on average 60% and increased to almost 100% during a biomass burning event. The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27%) were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C) and effective hygroscopicity parameters around κLV≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κt) could be parameterized as a function of κa,p and the number fraction of low volatility particles determined by VTDMA (φLV): κt,p=κa,p−φLV·(κa,p−κLV). Based on κ values derived from AMS and VTDMA data, the observed CCN number concentrations (NCCN,S≈102–104 cm−3 at S = 0.068–0.47%) could be efficiently predicted from the measured particle number size distribution. The mean relative deviations between observed and predicted CCN concentrations were ~10% when using κt,p, and they increased to ~20% when using only κa,p. The mean relative deviations were not higher (~20%) when using an approximate continental average value of κ≈0.3, although the constant κ value cannot account for the observed temporal variations in particle composition and mixing state (diurnal cycles and biomass burning events). Overall, the results confirm that on a global and climate modeling scale an average value of κ≈0.3 can be used for approximate predictions of CCN number concentrations in continental boundary layer air when aerosol size distribution data are available without information about chemical composition. Bulk or size-resolved data on aerosol chemical composition enable improved CCN predictions resolving regional and temporal variations, but the composition data need to be highly accurate and complemented by information about particle mixing state to achieve high precision (relative deviations <20%).
- ItemLong-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing(München : European Geopyhsical Union, 2013) Wang, Z.B.; Hu, M.; Wu, Z.J.; Yue, D.L.; He, L.Y.; Huang, X.F.; Liu, X.G.; Wiedensohler, A.A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8–24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004–2007 were performed. The total particle number and volume concentrations were 14 000 cm−3 and 37 μm−3 cm−3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004–2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.
- ItemParticle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime(München : European Geopyhsical Union, 2016) Wu, Z.J.; Zheng, J.; Shang, D.J.; Du, Z.F.; Wu, Y.S.; Zeng, L.M.; Wiedensohler, A.; Hu, M.Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs) of 50, 100, 150, 200, and 250 nm particles were respectively 0.16 ± 0.07, 0.19 ± 0.06, 0.22 ± 0.06, 0.26 ± 0.07, and 0.28 ± 0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF > 1.2) was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m−3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS) measurements using the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. The organic hygroscopicity parameter (κorg) showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF) periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles) was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.