## Search Results

#### A rigorous derivation and energetics of a wave equation with fractional damping

2021, Mielke, Alexander, Netz, Roland R., Zendehroud, Sina

We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water–air interface, which is an experimental setup that is relevant for understanding wave propagation in biological membranes. We study the scaling regime where the relevant horizontal length scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally damped wave equation for the membrane. We provide the associated existence results via linear semigroup theory and show convergence of the solutions in the scaling limit. Moreover, based on the energy–dissipation structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally damped wave equation with a time derivative of order 3/2.

#### Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures

2017, Liero, Matthias, Mielke, Alexander, Savaré, Giuseppe

We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. These problems arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a pair of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, which quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger–Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger–Kakutani and Kantorovich–Wasserstein distances.

#### Thermoviscoelasticity in Kelvin–Voigt Rheology at Large Strains

2020, Mielke, Alexander, Roubíček, Tomáš

The frame-indifferent thermodynamically-consistent model of thermoviscoelasticity at large strain is formulated in the reference configuration by using the concept of the second-grade nonsimple materials. We focus on physically correct viscous stresses that are frame indifferent under time-dependent rotations. Also elastic stresses are frame indifferent under rotations and respect positivity of the determinant of the deformation gradient. The heat transfer is governed by the Fourier law in the actual deformed configuration, which leads to a nontrivial description when pulled back to the reference configuration. The existence of weak solutions in the quasistatic setting, that is inertial forces are ignored, is shown by time discretization. © 2020, The Author(s).

#### Existence, numerical convergence, and evolutionary relaxation for a rate-independent phase-transformation model

2015, Heinz, Sebastian, Mielke, Alexander

We revisit the two-well model for phase transformation in a linearly elastic body introduced and studied in [MTL02]. This energetic rate-independent model is posed in terms of the elastic displacement and an internal variable that gives the phase portion of the second phase. We use a new approach based on mutual recovery sequences, which are adjusted to a suitable energy increment plus the associated dissipated energy and, thus, enable us to pass to the limit in the construction of energetic solutions. We give three distinct constructions of mutual recovery sequences which allow us (i) to generalize the existence result in [MTL02], (ii) to establish the convergence of suitable the evolutionary relaxation from the pure-state model to the relaxed mixture model. All these results rely on weak converge and involve the H-measure as an essential tool.

#### Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures

2020, Maas, Jan, Mielke, Alexander

We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.

#### Traveling Fronts in a Reaction–Diffusion Equation with a Memory Term

2022, Mielke, Alexander, Reichelt, Sina

Based on a recent work on traveling waves in spatially nonlocal reaction–diffusion equations, we investigate the existence of traveling fronts in reaction–diffusion equations with a memory term. We will explain how such memory terms can arise from reduction of reaction–diffusion systems if the diffusion constants of the other species can be neglected. In particular, we show that two-scale homogenization of spatially periodic systems can induce spatially homogeneous systems with temporal memory. The existence of fronts is proved using comparison principles as well as a reformulation trick involving an auxiliary speed that allows us to transform memory terms into spatially nonlocal terms. Deriving explicit bounds and monotonicity properties of the wave speed of the arising traveling front, we are able to establish the existence of true traveling fronts for the original problem with memory. Our results are supplemented by numerical simulations.

#### Exploring families of energy-dissipation landscapes via tilting: three types of EDP convergence

2021, Mielke, Alexander, Montefusco, Alberto, Peletier, Mark A.

We introduce two new concepts of convergence of gradient systems (Q,Eε,Rε) to a limiting gradient system (Q,E0,R0). These new concepts are called ‘EDP convergence with tilting’ and ‘contact–EDP convergence with tilting.’ Both are based on the energy-dissipation-principle (EDP) formulation of solutions of gradient systems and can be seen as refinements of the Gamma-convergence for gradient flows first introduced by Sandier and Serfaty. The two new concepts are constructed in order to avoid the ‘unnatural’ limiting gradient structures that sometimes arise as limits in EDP convergence. EDP convergence with tilting is a strengthening of EDP convergence by requiring EDP convergence for a full family of ‘tilted’ copies of (Q,Eε,Rε). It avoids unnatural limiting gradient structures, but many interesting systems are non-convergent according to this concept. Contact–EDP convergence with tilting is a relaxation of EDP convergence with tilting and still avoids unnatural limits but applies to a broader class of sequences (Q,Eε,Rε). In this paper, we define these concepts, study their properties, and connect them with classical EDP convergence. We illustrate the different concepts on a number of test problems.

#### Relating a Rate-Independent System and a Gradient System for the Case of One-Homogeneous Potentials

2021, Mielke, Alexander

We consider a non-negative and one-homogeneous energy functional J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional E(t,u)=tJ(u) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.

#### Symmetries in transmission electron microscopy imaging of crystals with strain

2022, Koprucki, Thomas, Maltsi, Anieza, Mielke, Alexander

Transmission electron microscopy (TEM) images of strained crystals often exhibit symmetries, the source of which is not always clear. To understand these symmetries, we distinguish between symmetries that occur from the imaging process itself and symmetries of the inclusion that might affect the image. For the imaging process, we prove mathematically that the intensities are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries observed in TEM images. We demonstrate our approach to the study of symmetries in TEM images using selected examples in the field of semiconductor nanostructures such as quantum wells and quantum dots.

#### EDP-convergence for nonlinear fast–slow reaction systems with detailed balance*

2021, Mielke, Alexander, Peletier, Mark A., Stephan, Artur

We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP-convergence, i.e. convergence in the sense of the energy-dissipation principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.