Search Results

Now showing 1 - 10 of 305
Loading...
Thumbnail Image
Item

Occurrence of polar mesosphere summer echoes at very high latitudes

2009, Zecha, M., Röttger, J.

Observations of polar mesosphere summer echoes (PMSE) have been carried out during the summer periodes 1999–2001 and 2003–2004 at the very high latitude of 78° N using the SOUSY Svalbard Radar (53.5 MHz) at Longyearbyen. Although the measurements could not be done continuously in these seasons, PMSE have been detected over more than 6600 h of 9300 h of observation time overall. Using this data base, particular PMSE occurrence characteristics have been determined. PMSE at Svalbard appear from the middle of May to the end of August with an almost permanent total occurrence in June and July. Diurnal variations are observable in the height-depend occurrence rates and in PMSE thickness, they show a maximum around 09:00–10:00 UTC and a minimum around 21:00–22:00 UTC. PMSE occur nearly exclusively between a height of 80 km and 92 km with a maximum near 85 km. However, PMSE appear not simultaneously over the entire height range, the mean vertical PMSE extension is around 4–6 km in June and July. Furthermore, typically PMSE are separated into several layers, and only 30% of all PMSE are single layers. The probability of multiple layers is greater in June and July than at the beginning and the end of the PMSE season and shows a marked 5-day-variation. The same variation is noticeable in the seasonal dependence of the PMSE occurrence and the PMSE thickness. We finally discuss potential geophysical processes to explain our observational results.

Loading...
Thumbnail Image
Item

Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems

2011, Massling, A., Niedermeier, N., Hennig, T., Fors, E.O., Swietlicki, E., Ehn, M., Hämeri, K., Villani, P., Laj, P., Good, N., McFiggans, G., Wiedensohler, A.

The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/−13% to +8/−6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 °C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.

Loading...
Thumbnail Image
Item

EARLINET Single Calculus Chain – overview on methodology and strategy

2015, D'Amico, Giuseppe, Amodeo, A., Baars, H., Binietoglou, I., Freudenthaler, V., Mattis, I., Wandinger, U., Pappalardo, G.

In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network – Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation period.

Loading...
Thumbnail Image
Item

Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10nm aerosol nanoparticles

2020, Lei, Ting, Ma, Nan, Hong, Juan, Tuch, Thomas, Wang, Xin, Wang, Zhibin, Pöhlker, Mira, Ge, Maofa, Wang, Weigang, Mikhailov, Eugene, Hoffmann, Thorsten, Pöschl, Ulrich, Su, Hang, Wiedensohler, Alfred, Cheng, Yafang

Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (1 %), high accuracy of the differential mobility analyzer (DMA) voltage (0:1 %) in the range of 0-50V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (1:4 %). To maintain a stable relative humidity (RH), the humidification system and the second DMA are placed in a well-insulated and air conditioner housing (0:1 K). We also tested and discussed different ways of preventing predeliquescence in the second DMA. Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. (2006b), with no significant size effect on the deliquescence and efflorescence relative humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Loading...
Thumbnail Image
Item

The ECOMA 2007 campaign: Rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer

2009, Brattli, A., Lie-Svendsen, Ø., Svenes, K., Hoppe, U.-P., Strelnikova, I., Rapp, M., Latteck, R., Torkar, K., Gumbel, J., Megner, L., Baumgarten, G.

The ECOMA series of rocket payloads use a set of aerosol particle, plasma, and optical instruments to study the properties of aerosol particles and their interaction with the ambient plasma environment in the polar mesopause region. In August 2007 the ECOMA-3 payload was launched into a region with Polar Mesosphere Summer Echoes (PMSE) and noctilucent clouds (NLC). An electron depletion was detected in a broad region between 83 and 88 km, coincident with enhanced density of negatively charged aerosol particles. We also find evidence for positive ion depletion in the same region. Charge neutrality requires that a population of positively charged particles smaller than 2 nm and with a density of at least 2×108 m−3 must also have been present in the layer, undetected by the instruments. A numerical model for the charging of aerosol particles and their interaction with the ambient plasma is used to analyse the results, showing that high aerosol particle densities are required in order to explain the observed ion density depletion. The model also shows that a very high photoionisation rate is required for the particles smaller than 2 nm to become positively charged, indicating that these may have a lower work function than pure water ice.

Loading...
Thumbnail Image
Item

Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis

2019, Ansmann, A., Mamouri, R.-E., Hofer, J., Baars, H., Althausen, D., Abdullaev, S.F.

The POLIPHON (Polarization Lidar Photometer Networking) method permits the retrieval of particle number, surface area, and volume concentration for dust and non-dust aerosol components. The obtained microphysical properties are used to estimate height profiles of particle mass, cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations. The conversion of aerosol-type-dependent particle extinction coefficients, derived from polarization lidar observations, into the aerosol microphysical properties (number, surface area, volume) forms the central part of the POLIPHON computations. The conversion parameters are determined from Aerosol Robotic Network (AERONET) aerosol climatologies of optical and microphysical properties. In this article, we focus on the dust-related POLIPHON retrieval products and present an extended set of dust conversion factors considering all relevant deserts around the globe. We apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia. Strong aerosol layering was observed with mineral dust advected from Kazakhstan (0-2km height), Iran (2-5km), the Arabian peninsula (5-7km), and the Sahara (8-10km). POLIPHON results obtained with different sets of conversion parameters were contrasted in this central Asian case study and permitted an estimation of the conversion uncertainties.

Loading...
Thumbnail Image
Item

EARLINET instrument intercomparison campaigns: Overview on strategy and results

2016, Wandinger, Ulla, Freudenthaler, Volker, Baars, Holger, Amodeo, Aldo, Engelmann, Ronny, Mattis, Ina, Groß, Silke, Pappalardo, Gelsomina, Giunta, Aldo, D'Amico, Giuseppe, Chaikovsky, Anatoli, Osipenko, Fiodor, Slesar, Alexander, Nicolae, Doina, Belegante, Livio, Talianu, Camelia, Serikov, Ilya, Linné, Holger, Jansen, Friedhelm, Apituley, Arnoud, Wilson, Keith M., de Graaf, Martin, Trickl, Thomas, Giehl, Helmut, Adam, Mariana, Comerón, Adolfo, Muñoz-Porcar, Constantino, Rocadenbosch, Francesc, Sicard, Michaël, Tomás, Sergio, Lange, Diego, Kumar, Dhiraj, Pujadas, Manuel, Molero, Francisco, Fernández, Alfonso J., Alados-Arboledas, Lucas, Bravo-Aranda, Juan Antonio, Navas-Guzmán, Francisco, Guerrero-Rascado, Juan Luis, Granados-Muñoz, María José, Preißler, Jana, Wagner, Frank, Gausa, Michael, Grigorov, Ivan, Stoyanov, Dimitar, Iarlori, Marco, Rizi, Vincenco, Spinelli, Nicola, Boselli, Antonella, Wang, Xuan, Feudo, Teresa Lo, Perrone, Maria Rita, De Tomas, Ferdinando, Burlizzi, Pasquale

This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2  ×  10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.

Loading...
Thumbnail Image
Item

Charging of mesospheric aerosol particles: The role of photodetachment and photoionization from meteoric smoke and ice particles

2009, Rapp, M.

Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs) and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (≫1000 cm-3) such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs. © 2009 Author(s).

Loading...
Thumbnail Image
Item

The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation

2016, Engelmann, Ronny, Kanitz, Thomas, Baars, Holger, Heese, Birgit, Althausen, Dietrich, Skupin, Annett, Wandinger, Ulla, Komppula, Mika, Stachlewska, Iwona S., Amiridis, Vassilis, Marinou, Eleni, Mattis, Ina, Linné, Holger, Ansmann, Albert

The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.

Loading...
Thumbnail Image
Item

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere

2022, Dragoneas, Antonis, Molleker, Sergej, Appel, Oliver, Hünig, Andreas, Böttger, Thomas, Hermann, Markus, Drewnick, Frank, Schneider, Johannes, Weigel, Ralf, Borrmann, Stephan

We report on the developments that enabled the field deployment of a fully automated aerosol mass spectrometer, especially designed for high-altitude measurements on unpressurized aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single-particle laser desorption and ionization and (b) continuous thermal desorption and electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named the ERICA (European Research Council Instrument for Chemical composition of Aerosols), operated successfully aboard the high-altitude research aircraft M-55 Geophysica at altitudes up to 20 km while being exposed to ambient conditions of very low atmospheric pressure and temperature. A primary goal of those field deployments was the in situ study of the Asian tropopause aerosol layer (ATAL). During 11 research flights, the instrument operated for more than 49 h and collected chemical composition information of more than 150 000 single particles combined with quantitative chemical composition analysis of aerosol particle ensembles. This paper presents in detail the technical characteristics of the main constituent parts of the instrument, as well as the design considerations for its integration into the aircraft and its autonomous operation in the upper troposphere and lower stratosphere (UTLS). Additionally, system performance data from the first field deployments of the instrument are presented and discussed, together with exemplary mass spectrometry data collected during those flights.