Search Results

Now showing 1 - 10 of 667
Loading...
Thumbnail Image
Item

Blind Super-Resolution Approach for Exploiting Illumination Variety in Optical-Lattice Illumination Microscopy

2021, Samanta, Krishnendu, Sarkar, Swagato, Acuña, Sebastian, Joseph, Joby, Ahluwalia, Balpreet Singh, Agarwal, Krishna

Optical-lattice illumination patterns help in pushing high spatial frequency components of the sample into the optical transfer function of a collection microscope. However, exploiting these high-frequency components require precise knowledge of illumination if reconstruction approaches similar to structured illumination microscopy are employed. Here, we present an alternate blind reconstruction approach that can provide super-resolution without the requirement of extra frames. For this, the property of exploiting temporal fluctuations in the sample emissions using “multiple signal classification algorithm” is extended aptly toward using spatial fluctuation of phase-modulated lattice illuminations for super-resolution. The super-resolution ability is shown for sinusoidal and multiperiodic lattice with approximately 3- and 6-fold resolution enhancements, respectively, over the diffraction limit. © 2021 The Authors. Published by American Chemical Society

Loading...
Thumbnail Image
Item

Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale

2021, Simon, Paul, Pompe, Wolfgang, Bobeth, Manfred, Worch, Hartmut, Kniep, Rüdiger, Formanek, Petr, Hild, Anne, Wenisch, Sabine, Sturm, Elena

The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC. © 2021 The Authors. Published by American Chemical Society.

Loading...
Thumbnail Image
Item

Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties

2016, Höller, Roland P. M., Dulle, Martin, Thomä, Sabrina, Mayer, Martin, Steiner, Anja Maria, Förster, Stephan, Fery, Andreas, Kuttner, Christian, Chanana, Munish

We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

Loading...
Thumbnail Image
Item

Fe3O4 Nanoparticles Grown on Cellulose/GO Hydrogels as Advanced Catalytic Materials for the Heterogeneous Fenton-like Reaction

2019, Chen, Yian, Pötschke, Petra, Pionteck, Jürgen, Voit, Brigitte, Qi, Haisong

Cellulose/graphene oxide (GO)/iron oxide (Fe3O4) composites were prepared by coprecipitating iron salts onto cellulose/GO hydrogels in a basic solution. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared, and X-ray diffraction characterization showed that Fe3O4 was successfully coated on GO sheets and cellulose. Cellulose/GO/Fe3O4 composites showed excellent catalytic activity by maintaining almost 98% of the removal of acid orange 7 (AO7) and showed stability over 20 consecutive cycles. This performance is attributable to the synergistic effect of Fe3O4 and GO during the heterogeneous Fenton-like reaction. Especially, the cellulose/GO/Fe3O4 composites preserve their activity by keeping the ratio of Fe3+/Fe2+ at 2 even after 20 catalysis cycles, which is supported by XPS analysis.

Loading...
Thumbnail Image
Item

Dehydroabietylamine-Based Cellulose Nanofibril Films: A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects

2019, Hassan, Ghada, Forsman, Nina, Wan, Xing, Keurulainen, Leena, Bimbo, Luis M., Johansson, Leena-Sisko, Sipari, Nina, Yli-Kauhaluoma, Jari, Zimmermann, Ralf, Stehl, Susanne, Werner, Carsten, Saris, Per E.J., Österberg, Monika, Moreira, Vânia M.

The design of antimicrobial surfaces as integral parts of advanced biomaterials is nowadays a high research priority, as the accumulation of microorganisms on surfaces inflicts substantial costs on the health and industry sectors. At present, there is a growing interest in designing functional materials from polymers abundant in nature, such as cellulose, that combine sustainability with outstanding mechanical properties and economic production. There is also the need to find suitable replacements for antimicrobial silver-based agents due to environmental toxicity and spread of resistance to metal antimicrobials. Herein we report the unprecedented decoration of cellulose nanofibril (CNF) films with dehydroabietylamine 1 (CNF-CMC-1), to give an innovative contact-active surface active against Gram-positive and Gram-negative bacteria including the methicillin-resistant S. aureus MRSA14TK301, with low potential to spread resistance and good biocompatibility, all achieved with low surface coverage. CNF-CMC-1 was particularly effective against S. aureus ATCC12528, causing virtually complete reduction of the total cells from 10 5 colony forming units (CFU)/mL bacterial suspensions, after 24 h of contact. This gentle chemical modification of the surface of CNF fully retained the beneficial properties of the original film, including moisture buffering and strength, relevant in many potential applications. Our originally designed surface represents a new class of ecofriendly biomaterials that optimizes the performance of CNF by adding antimicrobial properties without the need for environmentally toxic silver. © Copyright 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance

2018, Kuttner, Christian, Mayer, Martin, Dulle, Martin, Moscoso, Ana, López-Romero, Juan Manuel, Förster, Stephan, Fery, Andreas, Pérez-Juste, Jorge, Contreras-Cáceres, Rafael

We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

Loading...
Thumbnail Image
Item

Polypropylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene

2017, Nagendra, Baku, Rosely, C. V. Sijla, Leuteritz, Andreas, Reuter, Uta, Gowd, E. Bhoje

Sonication-assisted delamination of layered double hydroxides (LDHs) resulted in smaller-sized LDH nanoparticles (∼50-200 nm). Such delaminated Co-Al LDH, Zn-Al LDH, and Co-Zn-Al LDH solutions were used for the preparation of highly dispersed isotactic polypropylene (iPP) nanocomposites. Transmission electron microscopy and wide-angle X-ray diffraction results revealed that the LDH nanoparticles were well dispersed within the iPP matrix. The intention of this study is to understand the influence of the intralayer metal composition of LDH on the various properties of iPP/LDH nanocomposites. The sonicated LDH nanoparticles showed a significant increase in the crystallization rate of iPP; however, not much difference in the crystallization rate of iPP was observed in the presence of different types of LDH. The dynamic mechanical analysis results indicated that the storage modulus of iPP was increased significantly with the addition of LDH. The incorporation of different types of LDH showed no influence on the storage modulus of iPP. But considerable differences were observed in the flame retardancy and thermal stability of iPP with the type of LDH used for the preparation of nanocomposites. The thermal stability (50% weight loss temperature (T0.5)) of the iPP nanocomposite containing three-metal LDH (Co-Zn-Al LDH) is superior to that of the nanocomposites made of two-metal LDH (Co-Al LDH and Zn-Al LDH). Preliminary studies on the flame-retardant properties of iPP/LDH nanocomposites using microscale combustion calorimetry showed that the peak heat release rate was reduced by 39% in the iPP/Co-Zn-Al LDH nanocomposite containing 6 wt % LDH, which is higher than that of the two-metal LDH containing nanocomposites, iPP/Co-Al LDH (24%) and iPP/Zn-Al LDH (31%). These results demonstrated that the nanocomposites prepared using three-metal LDH showed better thermal and flame-retardant properties compared to the nanocomposites prepared using two-metal LDH. This difference might be due to the better char formation capability of three-metal LDH compared to that of two-metal LDH.

Loading...
Thumbnail Image
Item

Conformations of a Long Polymer in a Melt of Shorter Chains: Generalizations of the Flory Theorem

2015, Lang, Michael, Rubinstein, Michael, Sommer, Jens-Uwe

Large-scale simulations of the swelling of a long N-mer in a melt of chemically identical P-mers are used to investigate a discrepancy between theory and experiments. Classical theory predicts an increase of probe chain size R ∼ P–0.18 with decreasing degree of polymerization P of melt chains in the range of 1 < P < N1/2. However, both experiment and simulation data are more consistent with an apparently slower swelling R ∼ P–0.1 over a wider range of melt degrees of polymerization. This anomaly is explained by taking into account the recently discovered long-range bond correlations in polymer melts and corrections to excluded volume. We generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.

Loading...
Thumbnail Image
Item

Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading

2020, Schroepfer, Michaela, Junghans, Frauke, Voigt, Diana, Meyer, Michael, Breier, Anette, Schulze-Tanzil, Gundula, Prade, Ina

For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein-but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

In Vivo Evaluation of Engineered Self-Assembling Silk Fibroin Hydrogels after Intracerebral Injection in a Rat Stroke Model

2019, Gorenkova, Natalia, Osama, Ibrahim, Seib, F. Philipp, Carswell, Hilary V.O.

Targeting the brain cavity formed by an ischemic stroke is appealing for many regenerative treatment strategies but requires a robust delivery technology. We hypothesized that self-assembling silk fibroin hydrogels could serve as a reliable support matrix for regeneration in the stroke cavity. We therefore performed in vivo evaluation studies of self-assembling silk fibroin hydrogels after intracerebral injection in a rat stroke model. Adult male Sprague-Dawley rats (n = 24) underwent transient middle cerebral artery occlusion (MCAo) 2 weeks before random assignment to either no stereotaxic injection or a stereotaxic injection of either self-assembling silk fibroin hydrogels (4% w/v) or PBS into the lesion cavity. The impact on morbidity and mortality, space conformity, interaction with glial scar, interference with inflammatory response, and cell proliferation in the lesion cavity were examined for up to 7 weeks by a blinded investigator. Self-assembling hydrogels filled the stroke cavity with excellent space conformity and presented neither an overt microglial/macrophage response nor an adverse morbidity or mortality. The relationship between the number of proliferating cells and lesion volume was significantly changed by injection of self-assembling silk hydrogels. This in vivo stroke model confirmed that self-assembling silk fibroin hydrogels provide a favorable microenvironment as a future support matrix in the stroke cavity. Copyright © 2018 American Chemical Society.