Search Results
Trend detection in river flow indices in Poland
2018, Piniewski, Mikołaj, Marcinkowski, Paweł, Kundzewicz, Zbigniew W.
The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly ‘no trend’ results. However, the spatial gradient is apparent only for the data for the period 1981–2016 rather than for 1956–2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
Our future in the Anthropocene biosphere
2021, Folke, Carl, Polasky, Stephen, Rockström, Johan, Galaz, Victor, Westley, Frances, Lamont, Michèle, Scheffer, Marten, Österblom, Henrik, Carpenter, Stephen R., Chapin, F. Stuart, Seto, Karen C., Weber, Elke U., Crona, Beatrice I., Daily, Gretchen C., Dasgupta, Partha, Gaffney, Owen, Gordon, Line J., Hoff, Holger, Levin, Simon A., Lubchenco, Jane, Steffen, Will, Walker, Brian H.
The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. © 2021, The Author(s).
Agents, Bayes, and Climatic Risks - a modular modelling approach
2005, Haas, A., Jaeger, C.
When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine
Integrated analysis of water quality in a mesoscale lowland basin
2005, Habeck, A., Krysanova, V., Hattermann, F.
This article describes a modelling study on nitrogen transport from diffuse sources in the Nuthe catchment, representing a typical lowland region in the north-eastern Germany. Building on a hydrological validation performed in advance using the ecohydrological model SWIM, the nitrogen flows were simulated over a 20-year period (1981-2000). The relatively good quality of the input data, particularly for the years from 1993 to 2000, enabled the nitrogen flows to be reproduced sufficiently well, although modelling nutrient flows is always associated with a great deal of uncertainty. Subsequently, scenario calculations were carried out in order to investigate how nitrogen transport from the catchment could be further reduced. The selected scenario results with the greatest reduction of nitrogen washoff will briefly be presented in the paper.
Changes of snow cover in Poland
2017, Szwed, Małgorzata, Pin´skwar, Iwona, Kundzewicz, Zbigniew W., Graczyk, Dariusz, Mezghani, Abdelkader
The present paper examines variability of characteristics of snow cover (snow cover depth, number of days with snow cover and dates of beginning and end of snow cover) in Poland. The study makes use of a set of 43 long time series of observation records from the stations in Poland, from 1952 to 2013. To describe temporal changes in snow cover characteristics, the intervals of 1952–1990 and of 1991–2013 are compared and trends in analysed data are sought (e.g., using the Mann–Kendall test). Observed behaviour of time series of snow-related variables is complex and not easy to interpret, for instance because of the location of the research area in the zone of transitional moderate climate, where strong variability of climate events is one of the main attributes. A statistical link between the North Atlantic Oscillation (NAO) index and the snow cover depth, as well as the number of snow cover days is found.
Green transition, investment horizon, and dynamic portfolio decisions
2022, Semmler, Willi, Lessmann, Kai, Tahri, Ibrahim, Braga, Joao Paulo, Boros, Endre
This paper analyzes the implications of investors’ short-term oriented asset holding and portfolio decisions (or short-termism), and its consequences on green investments. We adopt a dynamic portfolio model, which contrary to conventional static mean-variance models, allows us to study optimal portfolios for different decision horizons. Our baseline model contains two assets, one asset with fluctuating returns and another asset with a constant risk-free return. The asset with fluctuating returns can arise from fossil-fuel based sectors or from clean energy related sectors. We consider different drivers of short-termism: the discount rate, the nature of discounting (exponential vs. hyperbolic), and the decision horizon of investors itself. We study first the implications of these determinants of short-termism on the portfolio wealth dynamics of the baseline model. We find that portfolio wealth declines faster with a higher discount rate, with hyperbolic discounting, and with shorter decision horizon. We extend our model to include a portfolio of two assets with fluctuating returns. For both model variants, we explore the cases where innovation efforts are spent on fossil fuel or clean energy sources. Detailing dynamic portfolio decisions in such a way may allow us for better pathways to empirical tests and may provide guidance to some online financial decision making.
Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe
2014, Stagl, J., Mayr, E., Koch, H., Hattermann, F.F., Huang, S.
For the management of protected areas knowledge about the water regime plays a very important role, in particular in areas with lakes, wetlands, marches or floodplains. The local hydrological conditions depend widely on temporal and spatial variations of the main components of the hydrologic cycle and physiographic conditions on site. To preserve a favourable conservation status under changing climatic conditions park managers require information about potential impacts of climate change in their area. The following chapter provides an overview of how climate change affects the hydrological regimes in Central and Eastern Europe. The hydrological impacts for the protected areas are area-specific and vary from region to region. Generally, an increase in temperature enhances the moisture holding capacity of the atmosphere and thus, leads to an intensification of the hydrological cycle. Key changes in the hydrological system include alterations in the seasonal distribution, magnitude and duration of precipitation and evapotranspiration. This may lead to changes in the water storage, surface runoff, soil moisture and seasonal snow packs as well as to modifications in the mass balance of Central European glaciers. Partly, water resources management can help to counterbalance effects of climate change on stream flow and water availability.
What can we learn from the projections of changes of flow patterns? Results from Polish case studies
2017, Piniewski, Mikołaj, Meresa, Hadush Kidane, Romanowicz, Renata, Osuch, Marzena, Szczes´niak, Mateusz, Kardel, Ignacy, Okruszko, Tomasz, Mezghani, Abdelkader, Kundzewicz, Zbigniew W.
River flow projections for two future time horizons and RCP 8.5 scenario, generated by two projects (CHASE-PL and CHIHE) in the Polish-Norwegian Research Programme, were compared. The projects employed different hydrological models over different spatial domains. The semi-distributed, process-based, SWAT model was used in the CHASE-PL project for the entire Vistula and Odra basins area, whilst the lumped, conceptual, HBV model was used in the CHIHE project for eight Polish catchments, for which the comparison study was made. Climate projections in both studies originated from the common EURO-CORDEX dataset, but they were different, e.g. due to different bias correction approaches. Increases in mean annual and seasonal flows were projected in both studies, yet the magnitudes of changes were largely different, in particular for the lowland catchments in the far future. The HBV-based increases were significantly higher in the latter case than the SWAT-based increases in all seasons except winter. Uncertainty in projections is high and creates a problem for practitioners.
DIVA: An iterative method for building modular integrated models
2005, Hinkel, J.
Integrated modelling of global environmental change impacts faces the challenge that knowledge from the domains of Natural and Social Science must be integrated. This is complicated by often incompatible terminology and the fact that the interactions between subsystems are usually not fully understood at the start of the project. While a modular modelling approach is necessary to address these challenges, it is not sufficient. The remaining question is how the modelled system shall be cut down into modules. While no generic answer can be given to this question, communication tools can be provided to support the process of modularisation and integration. Along those lines of thought a method for building modular integrated models was developed within the EU project DINAS-COAST and applied to construct a first model, which assesses the vulnerability of the world’s coasts to climate change and sea-level-rise. The method focuses on the development of a common language and offers domain experts an intuitive interface to code their knowledge in form of modules. However, instead of rigorously defining interfaces between the subsystems at the project’s beginning, an iterative model development process is defined and tools to facilitate communication and collaboration are provided. This flexible approach has the advantage that increased understanding about subsystem interactions, gained during the project’s lifetime, can immediately be reflected in the model.
Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 2: From eco-hydrology to water demand management
2007, Conradt, T., Kaltofen, M., Hentschel, M., Hattermann, F.F., Wechsung, F.
This second part of the paper presents the details of the eco-hydrological model SWIM simulating the natural water supply and its coupling to WBalMo, a water management model. Based on the climate scenarios of the STAR model, SWIM simulates the natural water and matter fluxes for the entire Elbe River area. All relevant processes are modelled for hydrotopes and the resulting discharges are accumulated in subbasins. The output data are input for the water management model WBalMo and the quality models Moneris and QSim. WBalMo takes storage management, inputs and withdrawals into account and analyses how demands by industry, power plants and households will be met at changing natural supply conditions. Some of the first results shall be presented here.