10 results
Search Results
Now showing 1 - 10 of 10
- ItemIdentification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport(Katlenburg-Lindau : European Geosciences Union, 2021) Ungeheuer, Florian; van Pinxteren, Dominik; Vogel, Alexander L.Analysing the composition of ambient ultrafine particles (UFPs) is a challenging task due to the low mass and chemical complexity of small particles, yet it is a prerequisite for the identification of particle sources and the assessment of potential health risks. Here, we show the molecular characterization of UFPs, based on cascade impactor (Nano-MOUDI) samples that were collected at an air quality monitoring station near one of Europe's largest airports, in Frankfurt, Germany. At this station, particle-size-distribution measurements show an enhanced number concentration of particles smaller than 50 nm during airport operating hours. We sampled the lower UFP fraction (0.010-0.018, 0.018-0.032, 0.032-0.056 classCombining double low lineinline-formula/m) when the air masses arrived from the airport. We developed an optimized filter extraction procedure using ultra-high-performance liquid chromatography (UHPLC) for compound separation and a heated electrospray ionization (HESI) source with an Orbitrap high-resolution mass spectrometer (HRMS) as a detector for organic compounds. A non-Target screening detected classCombining double low lineinline-formulag1/4200/ organic compounds in the UFP fraction with sample-To-blank ratios larger than 5. We identified the largest signals as homologous series of pentaerythritol esters (PEEs) and trimethylolpropane esters (TMPEs), which are base stocks of aircraft lubrication oils. We unambiguously attribute the majority of detected compounds to jet engine lubrication oils by matching retention times, high-resolution and accurate mass measurements, and comparing tandem mass spectrometry (MS classCombining double low lineinline-formula2/) fragmentation patterns between both ambient samples and commercially available jet oils. For each UFP stage, we created molecular fingerprints to visualize the complex chemical composition of the organic fraction and their average carbon oxidation state. These graphs underline the presence of the homologous series of PEEs and TMPEs and the appearance of jet oil additives (e.g.Tricresyl phosphate, TCP). Targeted screening of TCP confirmed the absence of the harmful tri-iortho/i isomer, while we identified a thermal transformation product of TMPE-based lubrication oil (trimethylolpropane phosphate, TMP-P). Even though a quantitative determination of the identified compounds is limited, the presented method enables the qualitative detection of molecular markers for jet engine lubricants in UFPs and thus strongly improves the source apportionment of UFPs near airports./p. © 2021 BMJ Publishing Group. All rights reserved.
- ItemVariability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter(Katlenburg-Lindau : European Geosciences Union, 2021) Yuan, Jinfeng; Modini, Robin Lewis; Zanatta, Marco; Herber, Andreas B.; Müller, Thomas; Wehner, Birgit; Poulain, Laurent; Tuch, Thomas; Baltensperger, Urs; Gysel-Beer, MartinProperties of atmospheric black carbon (BC) particles were characterized during a field experiment at a rural background site (Melpitz, Germany) in February 2017. BC absorption at a wavelength of 870 nm was measured by a photoacoustic extinctiometer, and BC physical properties (BC mass concentration, core size distribution and coating thickness) were measured by a single-particle soot photometer (SP2). Additionally, a catalytic stripper was used to intermittently remove BC coatings by alternating between ambient and thermo-denuded conditions. From these data the mass absorption cross section of BC (MACBC) and its enhancement factor (EMAC) were inferred for essentially waterfree aerosol as present after drying to low relative humidity (RH). Two methods were applied independently to investigate the coating effect on EMAC: A correlation method (MACBC; ambient vs. BC coating thickness) and a denuding method (MACBC; ambient vs. MACBC; denuded). Observed EMAC values varied from 1.0 to 1.6 (lower limit from denuding method) or 1:2 to 1.9 (higher limit from correlation method), with the mean coating volume fraction ranging from 54% to 78% in the dominating mass equivalent BC core diameter range of 200?220 nm.MACBC and EMAC were strongly correlated with coating thickness of BC. By contrast, other potential drivers of EMAC variability, such as different BC sources (air mass origin and absorption Angström exponent), coating composition (ratio of inorganics to organics) and BC core size distribution, had only minor effects. These results for ambient BC measured at Melpitz during winter show that the lensing effect caused by coatings on BC is the main driver of the variations in MACBC and EMAC, while changes in other BC particle properties such as source, BC core size or coating composition play only minor roles at this rural background site with a large fraction of aged particles. Indirect evidence suggests that potential dampening of the lensing effect due to unfavorable morphology was most likely small or even negligible.
- ItemAtmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters(Katlenburg-Lindau : EGU, 2018) Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Manninen, Hanna Elina; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, WolframThis paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
- ItemLong-range and local air pollution: What can we learn from chemical speciation of particulate matter at paired sites?(Katlenburg-Lindau : EGU, 2020) Pandolfi, Marco; Mooibroek, Dennis; Hopke, Philip; van Pinxteren, Dominik; Querol, Xavier; Herrmann, Hartmut; Alastuey, Andrés; Favez, Olivier; Hüglin, Christoph; Perdrix, Esperanza; Riffault, Véronique; Sauvage, Stéphane; van der Swaluw, Eric; Tarasova, Oksana; Colette, AugustinHere we report results of a detailed analysis of the urban and non-urban contributions to particulate matter (PM) concentrations and source contributions in five European cities, namely Schiedam (the Netherlands, NL), Lens (France, FR), Leipzig (Germany, DE), Zurich (Switzerland, CH) and Barcelona (Spain, ES). PM chemically speciated data from 12 European paired monitoring sites (one traffic, five urban, five regional and one continental background) were analysed by positive matrix factorisation (PMF) and Lenschow's approach to assign measured PM and source contributions to the different spatial levels. Five common sources were obtained at the 12 sites: sulfate-rich (SSA) and nitrate-rich (NSA) aerosols, road traffic (RT), mineral matter (MM), and aged sea salt (SS). These sources explained from 55 % to 88 % of PM mass at urban low-traffic-impact sites (UB) depending on the country. Three additional common sources were identified at a subset of sites/countries, namely biomass burning (BB) (FR, CH and DE), explaining an additional 9 %-13 % of PM mass, and residual oil combustion (V-Ni) and primary industrial (IND) (NL and ES), together explaining an additional 11 %-15 % of PM mass. In all countries, the majority of PM measured at UB sites was of a regional+continental (R+C) nature (64 %-74 %). The R+C PM increments due to anthropogenic emissions in DE, NL, CH, ES and FR represented around 66 %, 62 %, 52 %, 32 % and 23 %, respectively, of UB PM mass. Overall, the R+C PM increments due to natural and anthropogenic sources showed opposite seasonal profiles with the former increasing in summer and the latter increasing in winter, even if exceptions were observed. In ES, the anthropogenic R+C PM increment was higher in summer due to high contributions from regional SSA and V-Ni sources, both being mostly related to maritime shipping emissions at the Spanish sites. Conversely, in the other countries, higher anthropogenic R+C PM increments in winter were mostly due to high contributions from NSA and BB regional sources during the cold season. On annual average, the sources showing higher R+C increments were SSA (77 %-91 % of SSA source contribution at the urban level), NSA (51 %-94 %), MM (58 %-80 %), BB (42 %-78 %) and IND (91 % in NL). Other sources showing high R+C increments were photochemistry and coal combustion (97 %-99 %; identified only in DE). The highest regional SSA increment was observed in ES, especially in summer, and was related to ship emissions, enhanced photochemistry and peculiar meteorological patterns of the Western Mediterranean. The highest R+C and urban NSA increments were observed in NL and associated with high availability of precursors such as NOx and NH3. Conversely, on average, the sources showing higher local increments were RT (62 %-90 % at all sites) and V-Ni (65 %-80 % in ES and NL). The relationship between SSA and V-Ni indicated that the contribution of ship emissions to the local sulfate concentrations in NL has strongly decreased since 2007 thanks to the shift from high-sulfur-to low-sulfur-content fuel used by ships. An improvement of air quality in the five cities included here could be achieved by further reducing local (urban) emissions of PM, NOx and NH3 (from both traffic and non-traffic sources) but also SO2 and PM (from maritime ships and ports) and giving high relevance to non-urban contributions by further reducing emissions of SO2 (maritime shipping) and NH3 (agriculture) and those from industry, regional BB sources and coal combustion. © 2020 Copernicus GmbH. All rights reserved.
- ItemMercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014-2016(Katlenburg-Lindau : EGU, 2018) Slemr, Franz; Weigelt, Andreas; Ebinghaus, Ralf; Bieser, Johannes; Brenninkmeijer, Carl A. M.; Rauthe-Schöch, Armin; Hermann, Markus; Martinsson, Bengt G.; van Velthoven, Peter; Bönisch, Harald; Neumaier, Marco; Zahn, Andreas; Ziereis, HelmutMercury was measured onboard the IAGOS-CARIBIC passenger aircraft from May 2005 until February 2016 during near monthly sequences of mostly four intercontinental flights from Germany to destinations in North and South America, Africa and South and East Asia. Most of these mercury data were obtained using an internal default signal integration procedure of the Tekran instrument but since April 2014 more precise and accurate data were obtained using post-flight manual integration of the instrument raw signal. In this paper we use the latter data. Increased upper tropospheric total mercury (TM) concentrations due to large scale biomass burning were observed in the upper troposphere (UT) at the equator and southern latitudes during the flights to Latin America and South Africa in boreal autumn (SON) and boreal winter (DJF). TM concentrations in the lowermost stratosphere (LMS) decrease with altitude above the thermal tropopause but the gradient is less steep than reported before. Seasonal variation of the vertical TM distribution in the UT and LMS is similar to that of other trace gases with surface sources and stratospheric sinks. Speciation experiments suggest comparable TM and gaseous elementary mercury (GEM) concentrations at and below the tropopause leaving little space for Hg2+ (TM-thinsp;GEM) being the dominating component of TM here. In the stratosphere significant GEM concentrations were found to exist up to 4 km altitude above the thermal tropopause. Correlations with N2O as a reference tracer suggest stratospheric lifetimes of 72±37 and 74±27 years for TM and GEM, respectively, comparable to the stratospheric lifetime of COS. This coincidence, combined with pieces of evidence from us and other researchers, corroborates the hypothesis that Hg2+ formed by oxidation in the stratosphere attaches to sulfate particles formed mainly by oxidation of COS and is removed with them from the stratosphere by air mass exchange, gravitational sedimentation and cloud scavenging processes.
- ItemAerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany(Katlenburg-Lindau : EGU, 2022) Wang, Yuan; Henning, Silvia; Poulain, Laurent; Lu, Chunsong; Stratmann, Frank; Wang, Yuying; Niu, Shengjie; Pöhlker, Mira L.; Herrmann, Hartmut; Wiedensohler, AlfredUnderstanding aerosol particle activation is essential for evaluating aerosol indirect effects (AIEs) on climate. Long-term measurements of aerosol particle activation help to understand the AIEs and narrow down the uncertainties of AIEs simulation. However, they are still scarce. In this study, more than 4 years of comprehensive aerosol measurements were utilized at the central European research station of Melpitz, Germany, to gain insight into the aerosol particle activation and provide recommendations on improving the prediction of number concentration of cloud condensation nuclei (CCN, NCCN). (1) The overall CCN activation characteristics at Melpitz are provided. As supersaturation (SS) increases from 0.1% to 0.7%, the median NCCN increases from 399 to 2144cm-3, which represents 10% to 48% of the total particle number concentration with a diameter range of 10-800nm, while the median hygroscopicity factor (κ) and critical diameter (Dc) decrease from 0.27 to 0.19 and from 176 to 54nm, respectively. (2) Aerosol particle activation is highly variable across seasons, especially at low-SS conditions. At SSCombining double low line0.1%, the median NCCN and activation ratio (AR) in winter are 1.6 and 2.3 times higher than the summer values, respectively. (3) Both κ and the mixing state are size-dependent. As the particle diameter (Dp) increases, κ increases at Dp of 1/440 to 100nm and almost stays constant at Dp of 100 to 200nm, whereas the degree of the external mixture keeps decreasing at Dp of 1/440 to 200nm. The relationships of κ vs. Dp and degree of mixing vs. Dp were both fitted well by a power-law function. (4) Size-resolved κ improves the NCCN prediction. We recommend applying the κ-Dp power-law fit for NCCN prediction at Melpitz, which performs better than using the constant κ of 0.3 and the κ derived from particle chemical compositions and much better than using the NCCN (AR) vs. SS relationships. The κ-Dp power-law fit measured at Melpitz could be applied to predict NCCN for other rural regions. For the purpose of improving the prediction of NCCN, long-term monodisperse CCN measurements are still needed to obtain the κ-Dp relationships for different regions and their seasonal variations.
- ItemVariability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations(Amsterdam [u.a.] : Elsevier Science, 2018) Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; Gu, J.; Flentje, H.; Briel, B.; Asbac, C.; Kaminski, H.; Ries, L.; Sohme, R.; Gerwig, H.; Wirtz, K.; Meinhardt, F.; Schwerin, A.; Bath, O.; Ma, N.; Wiedensohler, A.This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors
- ItemDevelopment of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases(Göttingen : Copernicus GmbH, 2019) Stieger, B.; Spindler, G.; Van Pinxteren, D.; Grüner, A.; Wallasch, M.; Herrmann, H.A method is presented to quantify the lowmolecular- weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5 ngm3 for malonate and 17.4 ngm3 for glutarate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2 D0.95-0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306 ngm3 for acetic acid, followed by formic (199 ngm3), propionic (83 ngm3), pyruvic (76 ngm3), butyric (34 ngm3) and glycolic acid (32 ngm3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30 ngm3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source.
- ItemNucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles(London : Springer Nature, 2022) Ungeheuer, Florian; Caudillo, LucÃa; Ditas, Florian; Simon, Mario; van Pinxteren, Dominik; Kılıç, DoÄŸuÅŸhan; Rose, Diana; Jacobi, Stefan; Kürten, Andreas; Curtius, Joachim; Vogel, Alexander L.Large airports are a major source of ultrafine particles, which spread across densely populated residential areas, affecting air quality and human health. Jet engine lubrication oils are detectable in aviation-related ultrafine particles, however, their role in particle formation and growth remains unclear. Here we show the volatility and new-particle-formation ability of a common synthetic jet oil, and the quantified oil fraction in ambient ultrafine particles downwind of Frankfurt International Airport, Germany. We find that the oil mass fraction is largest in the smallest particles (10-18 nm) with 21% on average. Combining ambient particle-phase concentration and volatility of the jet oil compounds, we determine a lower-limit saturation ratio larger than 1 × 105 for ultra-low volatility organic compounds. This indicates that the oil is an efficient nucleation agent. Our results demonstrate that jet oil nucleation is an important mechanism that can explain the abundant observations of high number concentrations of non-refractory ultrafine particles near airports.
- ItemDecreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018(Katlenburg-Lindau : EGU, 2020) Sun, Jia; Birmili, Wolfram; Hermann, Markus; Tuch, Thomas; Weinhold, Kay; Merkel, Maik; Rasch, Fabian; Müller, Thomas; Schladitz, Alexander; Bastian, Susanne; Löschau, Gunter; Cyrys, Josef; Gu, Jianwei; Flentje, Harald; Briel, Björn; Asbach, Christoph; Kaminski, Heinz; Ries, Ludwig; Sohmer, Ralf; Gerwig, Holger; Wirtz, Klaus; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ma, Nan; Wiedensohler, AlfredAnthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009-2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between-13.1% and-1.7% per year. The slopes of the PNCs vary from-17.2% to-1.7 %,-7.8% to-1.1 %, and-11.1% to-1.2% per year for 10-30, 30-200, and 200-800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies. © 2020 Author(s).