6 results
Search Results
Now showing 1 - 6 of 6
- ItemIdentification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport(Katlenburg-Lindau : European Geosciences Union, 2021) Ungeheuer, Florian; van Pinxteren, Dominik; Vogel, Alexander L.Analysing the composition of ambient ultrafine particles (UFPs) is a challenging task due to the low mass and chemical complexity of small particles, yet it is a prerequisite for the identification of particle sources and the assessment of potential health risks. Here, we show the molecular characterization of UFPs, based on cascade impactor (Nano-MOUDI) samples that were collected at an air quality monitoring station near one of Europe's largest airports, in Frankfurt, Germany. At this station, particle-size-distribution measurements show an enhanced number concentration of particles smaller than 50 nm during airport operating hours. We sampled the lower UFP fraction (0.010-0.018, 0.018-0.032, 0.032-0.056 classCombining double low lineinline-formula/m) when the air masses arrived from the airport. We developed an optimized filter extraction procedure using ultra-high-performance liquid chromatography (UHPLC) for compound separation and a heated electrospray ionization (HESI) source with an Orbitrap high-resolution mass spectrometer (HRMS) as a detector for organic compounds. A non-Target screening detected classCombining double low lineinline-formulag1/4200/ organic compounds in the UFP fraction with sample-To-blank ratios larger than 5. We identified the largest signals as homologous series of pentaerythritol esters (PEEs) and trimethylolpropane esters (TMPEs), which are base stocks of aircraft lubrication oils. We unambiguously attribute the majority of detected compounds to jet engine lubrication oils by matching retention times, high-resolution and accurate mass measurements, and comparing tandem mass spectrometry (MS classCombining double low lineinline-formula2/) fragmentation patterns between both ambient samples and commercially available jet oils. For each UFP stage, we created molecular fingerprints to visualize the complex chemical composition of the organic fraction and their average carbon oxidation state. These graphs underline the presence of the homologous series of PEEs and TMPEs and the appearance of jet oil additives (e.g.Tricresyl phosphate, TCP). Targeted screening of TCP confirmed the absence of the harmful tri-iortho/i isomer, while we identified a thermal transformation product of TMPE-based lubrication oil (trimethylolpropane phosphate, TMP-P). Even though a quantitative determination of the identified compounds is limited, the presented method enables the qualitative detection of molecular markers for jet engine lubricants in UFPs and thus strongly improves the source apportionment of UFPs near airports./p. © 2021 BMJ Publishing Group. All rights reserved.
- ItemLong-range and local air pollution: What can we learn from chemical speciation of particulate matter at paired sites?(Katlenburg-Lindau : EGU, 2020) Pandolfi, Marco; Mooibroek, Dennis; Hopke, Philip; van Pinxteren, Dominik; Querol, Xavier; Herrmann, Hartmut; Alastuey, Andrés; Favez, Olivier; Hüglin, Christoph; Perdrix, Esperanza; Riffault, Véronique; Sauvage, Stéphane; van der Swaluw, Eric; Tarasova, Oksana; Colette, AugustinHere we report results of a detailed analysis of the urban and non-urban contributions to particulate matter (PM) concentrations and source contributions in five European cities, namely Schiedam (the Netherlands, NL), Lens (France, FR), Leipzig (Germany, DE), Zurich (Switzerland, CH) and Barcelona (Spain, ES). PM chemically speciated data from 12 European paired monitoring sites (one traffic, five urban, five regional and one continental background) were analysed by positive matrix factorisation (PMF) and Lenschow's approach to assign measured PM and source contributions to the different spatial levels. Five common sources were obtained at the 12 sites: sulfate-rich (SSA) and nitrate-rich (NSA) aerosols, road traffic (RT), mineral matter (MM), and aged sea salt (SS). These sources explained from 55 % to 88 % of PM mass at urban low-traffic-impact sites (UB) depending on the country. Three additional common sources were identified at a subset of sites/countries, namely biomass burning (BB) (FR, CH and DE), explaining an additional 9 %-13 % of PM mass, and residual oil combustion (V-Ni) and primary industrial (IND) (NL and ES), together explaining an additional 11 %-15 % of PM mass. In all countries, the majority of PM measured at UB sites was of a regional+continental (R+C) nature (64 %-74 %). The R+C PM increments due to anthropogenic emissions in DE, NL, CH, ES and FR represented around 66 %, 62 %, 52 %, 32 % and 23 %, respectively, of UB PM mass. Overall, the R+C PM increments due to natural and anthropogenic sources showed opposite seasonal profiles with the former increasing in summer and the latter increasing in winter, even if exceptions were observed. In ES, the anthropogenic R+C PM increment was higher in summer due to high contributions from regional SSA and V-Ni sources, both being mostly related to maritime shipping emissions at the Spanish sites. Conversely, in the other countries, higher anthropogenic R+C PM increments in winter were mostly due to high contributions from NSA and BB regional sources during the cold season. On annual average, the sources showing higher R+C increments were SSA (77 %-91 % of SSA source contribution at the urban level), NSA (51 %-94 %), MM (58 %-80 %), BB (42 %-78 %) and IND (91 % in NL). Other sources showing high R+C increments were photochemistry and coal combustion (97 %-99 %; identified only in DE). The highest regional SSA increment was observed in ES, especially in summer, and was related to ship emissions, enhanced photochemistry and peculiar meteorological patterns of the Western Mediterranean. The highest R+C and urban NSA increments were observed in NL and associated with high availability of precursors such as NOx and NH3. Conversely, on average, the sources showing higher local increments were RT (62 %-90 % at all sites) and V-Ni (65 %-80 % in ES and NL). The relationship between SSA and V-Ni indicated that the contribution of ship emissions to the local sulfate concentrations in NL has strongly decreased since 2007 thanks to the shift from high-sulfur-to low-sulfur-content fuel used by ships. An improvement of air quality in the five cities included here could be achieved by further reducing local (urban) emissions of PM, NOx and NH3 (from both traffic and non-traffic sources) but also SO2 and PM (from maritime ships and ports) and giving high relevance to non-urban contributions by further reducing emissions of SO2 (maritime shipping) and NH3 (agriculture) and those from industry, regional BB sources and coal combustion. © 2020 Copernicus GmbH. All rights reserved.
- ItemImpact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions(Katlenburg-Lindau : EGU, 2022) Man, Ruiqi; Wu, Zhijun; Zong, Taomou; Voliotis, Aristeidis; Qiu, Yanting; Größ, Johannes; van Pinxteren, Dominik; Zeng, Limin; Herrmann, Hartmut; Wiedensohler, Alfred; Hu, MinParticle hygroscopicity plays a key role in determining the particle deposition in the human respiratory tract (HRT). In this study, the effects of hygroscopicity and mixing state on regional and total deposition doses on the basis of the particle number concentration for children, adults, and the elderly were quantified using the Multiple-Path Particle Dosimetry model, based on the size-resolved particle hygroscopicity measurements at HRT-like conditions (relative humidity = 98 %) performed in the North China Plain. The measured particle population with an external mixing state was dominated by hygroscopic particles (number fraction = (91.5 ± 5.7) %, mean ± standard deviation (SD); the same below). Particle hygroscopic growth in the HRT led to a reduction by around 24 % in the total doses of submicron particles for all age groups. Such a reduction was mainly caused by the growth of hygroscopic particles and was more pronounced in the pulmonary and tracheobronchial regions. Regardless of hygroscopicity, the elderly group of people had the highest total dose among three age groups, while children received the maximum total deposition rate. With 270 nm in diameter as the boundary, the total deposition doses of particles smaller than this diameter were overestimated, and those of larger particles were underestimated, assuming no particle hygroscopic growth in the HRT. From the perspective of the daily variation, the deposition rates of hygroscopic particles with an average of (2.88 ± 0.81) × 109 particles h-1 during the daytime were larger than those at night ((2.32 ± 0.24) × 109 particles h-1). On the contrary, hydrophobic particles interpreted as freshly emitted soot and primary organic aerosols exhibited higher deposition rates at nighttime ((3.39 ± 1.34) × 108 particles h-1) than those in the day ((2.58 ± 0.76) × 108 particles h-1). The traffic emissions during the rush hours enhanced the deposition rate of hydrophobic particles. This work provides a more explicit assessment of the impact of hygroscopicity and mixing state on the deposition pattern of submicron particles in the HRT. Copyright:
- ItemDevelopment of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds(Katlenburg-Lindau : EGU, 2019) Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Mutzel, Anke; Böge, Olaf; Rodigast, Maria; Poulain, Laurent; van Pinxteren, Dominik; Wolke, Ralf; Aumont, Bernard; Herrmann, HartmutThis paper presents a new CAPRAM-GECKOA protocol for mechanism auto-generation of aqueous-phase organic processes. For the development, kinetic data in the literature were reviewed and a database with 464 aqueousphase reactions of the hydroxyl radical with organic compounds and 130 nitrate radical reactions with organic compounds has been compiled and evaluated. Five different methods to predict aqueous-phase rate constants have been evaluated with the help of the kinetics database: gas-aqueous phase correlations, homologous series of various compound classes, radical reactivity comparisons, Evans-Polanyi-type correlations, and structure-activity relationships (SARs). The quality of these prediction methods was tested as well as their suitability for automated mechanism construction. Based on this evaluation, SARs form the basis of the new CAPRAM-GECKO-A protocol. Evans-Polanyi-type correlations have been advanced to consider all available H atoms in a molecule besides the H atoms with only the weakest bond dissociation enthalpies (BDEs). The improved Evans- Polanyi-type correlations are used to predict rate constants for aqueous-phase NO3 and organic compounds reactions. Extensive tests have been performed on essential parameters and on highly uncertain parameters with limited experimental data. These sensitivity studies led to further improvements in the new CAPRAM-GECKO-A protocol but also showed current limitations. Biggest uncertainties were observed in uptake processes and the estimation of Henry's law coefficients as well as radical chemistry, in particular the degradation of alkoxy radicals. Previous estimation methods showed several deficits, which impacted particle growth. For further evaluation, a 1,3,5-trimethylbenzene oxidation experiment has been performed in the aerosol chamber "Leipziger Aerosolkammer" (LEAK) at high relative humidity conditions and compared to a multiphase mechanism using the Master Chemical Mechanism (MCMv3.2) in the gas phase and using a methylglyoxal oxidation scheme of about 600 reactions generated with the new CAPRAM-GECKO-A protocol in the aqueous phase. While it was difficult to evaluate single particle constituents due to concentrations close to the detection limits of the instruments applied, the model studies showed the importance of aqueous-phase chemistry in respect to secondary organic aerosol (SOA) formation and particle growth. The new protocol forms the basis for further CAPRAM mechanism development towards a new version 4.0. Moreover, it can be used as a supplementary tool for aerosol chambers to design and analyse experiments of chemical complexity and help to understand them on a molecular level. © 2019 Author(s).
- ItemMolecular distributions of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 collected at the top of Mt. Tai, North China, during the wheat burning season of 2014(Katlenburg-Lindau : EGU, 2018) Zhu, Yanhong; Yang, Lingxiao; Chen, Jianmin; Kawamura, Kimitaka; Sato, Mamiko; Tilgner, Andreas; van Pinxteren, Dominik; Chen, Ying; Xue, Likun; Wang, Xinfeng; Simpson, Isobel J.; Herrmann, Hartmut; Blake, Donald R.; Wang, WenxingFine particulate matter (PM2.5) samples collected at Mount (Mt.) Tai in the North China Plain during summer 2014 were analyzed for dicarboxylic acids and related compounds (oxocarboxylic acids and α-dicarbonyls) (DCRCs). The total concentration of DCRCs was 1050±580 and 1040±490ng m-3 during the day and night, respectively. Although these concentrations were about 2 times lower than similar measurements in 2006, the concentrations reported here were about 1-13 times higher than previous measurements in other major cities in the world. Molecular distributions of DCRCs revealed that oxalic acid (C2) was the dominant species (50%), followed by succinic acid (C4) (12%) and malonic acid (C3) (8%). WRF modeling revealed that Mt. Tai was mostly in the free troposphere during the campaign and long-range transport was a major factor governing the distributions of the measured compounds at Mt. Tai. A majority of the samples (79%) had comparable concentrations during the day and night, with their day-night concentration ratios between 0.9 and 1.1. Multi-day transport was considered an important reason for the similar concentrations. Correlation analyses of DCRCs and their gas precursors and between C2 and sulfate indicated precursor emissions and aqueous-phase oxidations during long-range transport also likely play an important role, especially during the night. Source identification indicated that anthropogenic activities followed by photochemical aging accounted for about 60% of the total variance and were the dominant source at Mt. Tai. However, biomass burning was only important during the first half of the measurement period. Measurements of potassium (K+) and DCRCs were about 2 times higher than those from the second half of the measurement period. The concentration of levoglucosan, a biomass burning tracer, decreased by about 80% between 2006 and 2014, indicating that biomass burning may have decreased between 2006 and 2014.
- ItemNucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles(London : Springer Nature, 2022) Ungeheuer, Florian; Caudillo, Lucía; Ditas, Florian; Simon, Mario; van Pinxteren, Dominik; Kılıç, Doğuşhan; Rose, Diana; Jacobi, Stefan; Kürten, Andreas; Curtius, Joachim; Vogel, Alexander L.Large airports are a major source of ultrafine particles, which spread across densely populated residential areas, affecting air quality and human health. Jet engine lubrication oils are detectable in aviation-related ultrafine particles, however, their role in particle formation and growth remains unclear. Here we show the volatility and new-particle-formation ability of a common synthetic jet oil, and the quantified oil fraction in ambient ultrafine particles downwind of Frankfurt International Airport, Germany. We find that the oil mass fraction is largest in the smallest particles (10-18 nm) with 21% on average. Combining ambient particle-phase concentration and volatility of the jet oil compounds, we determine a lower-limit saturation ratio larger than 1 × 105 for ultra-low volatility organic compounds. This indicates that the oil is an efficient nucleation agent. Our results demonstrate that jet oil nucleation is an important mechanism that can explain the abundant observations of high number concentrations of non-refractory ultrafine particles near airports.