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Abstract

Given a Lévy process L, we consider the so-called statistical Skorohod embedding
problem of recovering the distribution of an independent random time T based on i.i.d.
sample from LT . Our approach is based on the genuine use of the Mellin and Laplace
transforms. We propose consistent estimators for the density of T, derive their conver-
gence rates and prove their optimality. It turns out that the convergence rates heavily
depend on the decay of the Mellin transform of T. We also consider the application of
our results to the problem of statistical inference for variance-mean mixture models and
for time-changed Lévy processes.

1 Introduction

The so called Skorohod embedding (SE) problem or Skorohod stopping problem was first
stated and solved by Skorohod in 1961. This problem can be formulated as follows.

Problem 1.1 (Skorohod Embedding Problem). For a given probability measure µ on R, such
that

∫
|x|dµ(x) <∞ and

∫
xdµ(x) = 0, find a stopping time T such that BT ∼ µ and BT∧t

is a uniformly integrable martingale.

The SE problem has recently drawn much attention in the literature, see e.g. Ob lój, [8], where
the list of references consists of more than 100 items. In fact, there is no unique solution to
the SE problem and there are currently more than 20 different solutions available. This means
that from a statistical point of view, the SE problem is not well posed. In this paper we first
study what we call statistical Skorohod embedding (SSE) problem.

Problem 1.2 (Statistical Skorohod Embedding Problem). Based on i.i.d. sample X1, . . . , Xn

from the distribution of BT consistently estimate the distribution of the random time T ≥ 0,
where B and T are assumed to be independent.

The independence of B and T is needed to ensure the identifiability of the distribution of
T from the distribution of BT . It is shown that the SSE problem is closely related to the
multiplicative deconvolution problem. Using the Mellin transform technique, we construct a
consistent estimator for the density of T and derive its convergence rates in different norms.
Furthermore, we show that the obtained rates are optimal in minimax sense. Next, we generalize
the SSE problem by replacing the standard Brownian motion with a general Lévy process. The
generalized SSE problem turns out to be much more involved and its solution requires some
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new ideas. Using a genuine combination of the Laplace and Mellin transforms, we construct a
consistent estimator, derive its minimax convergence rates and prove that these rates basically
coincide with the rates in the SSE problem.

Some particular cases of generalized statistical Skorohod embedding problem have been already
studied in the literature. For example, the case of the stopped Poisson process was considered
in the recent paper of Comte and Genon-Catalot, [5].

2 Statistical Skorohod embedding problem

Let B be a Brownian motion and let a random variable T ≥ 0 be independent of B. We then
have,

X := BT ∼
√
T B1 (1)

and the problem of reconstructing T is related to a multiplicative deconvolution problem. While
for additive deconvolution problems the Fourier transform plays an important role, here we can
conveniently use the Mellin transform.

Definition 2.1. Let ξ be a non-negative random variable with a probability density pξ, then
the Mellin transform of pξ is defined via

M[pξ](z) := E[ξz−1] =

∫ ∞
0

pξ(x)xz−1 dx (2)

for all z ∈ Sξ with Sξ =
{
z ∈ C : E[ξRez−1] <∞

}
.

Since pξ is a density it is integrable and so at least {z ∈ C : Re(z) = 1} ⊂ Sξ. Under mild
assumptions on the growth of pξ near the origin one obtains

{z ∈ C : 0 ≤ aξ < Re(z) < bξ} ⊂ Sξ

for some 0 ≤ aξ < 1 ≤ bξ. Then the Mellin transform (2) exists and is analytic in the strip
aξ < Re z < bξ. For example, if pξ is essentially bounded in a right-hand neighborhood of zero,
we may take aξ = 0. The role of the Mellin transform in probability theory is mainly related
to the product of independent random variables: in fact it is well-known that the probability
density of the product of two independent random variables is given by the Mellin convolution
of the two corresponding densities. Due to (1), the SSE problem is closely connected to the
Mellin convolution. Suppose that the random time T has a density pT and that we may take
0 ≤ aT < 1 ≤ bT . Since S|B1| ⊃ {z ∈ C : Re(z) > 0} , we derive for max(2aT − 1, 0) <
Re(z) < 2bT − 1,

M[p|X|](z) = E
[
|B1|z−1

]
E
[
T (z−1)/2

]
=M[p|B1|](z)M[pT ]((z + 1)/2) =

2(z−1)/2

√
π

Γ(z/2)M[pT ]((z + 1)/2).
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As a result

M[pT ](z) =

√
π

2z−1

M[p|X|](2z − 1)

Γ(z − 1/2)
, max(aT , 1/2) < Re(z) < bT

and the Mellin inversion formula yields

pT (x) =
1

2π

∫ γ+i∞

γ−i∞
x−γ−ivM[pT ](γ + iv) dv (3)

=
1√
π

∫ ∞
−∞

x−γ−ivM[p|X|](2 (γ + iv)− 1)

2γ+ivΓ(γ + iv − 1/2)
dv for max(aT , 1/2) < γ < bT , x > 0.

Furthermore, the Mellin transform of p|X| can be directly estimated from the data X1, . . . , Xn

via the empirical Mellin transform:

Mn[p|X|](z) :=
1

n

n∑
k=1

|Xk|z−1, Re(z) > 1/2, (4)

where the condition Re(z) > 1/2 guarantees that the variance of the estimator (4) is finite.
Note however that the integral in (3) may fail to exist if we replaceM[p|X|] byMn[p|X|]. We
so need to regularize the inverse Mellin operator. To this end, let us consider a kernel K(·) ≥ 0
supported on [−1, 1] and a sequence of bandwidths hn > 0 tending to 0 as n→∞. Then we
define, in view of (4), for some max(aT , 3/4) < γ < bT ,

pT,n(x) :=
1√
π

∫ ∞
−∞

x−γ−ivK(vhn)
Mn[p|X|](2(γ + iv)− 1)

2γ+ivΓ(γ − 1/2 + iv)
dv. (5)

For our convergence analysis, we will henceforth take the simplest kernel

K(y) = 1[−1,1](y),

but note that in principle other kernels may be considered as well. The next theorem states
that pT,n converges to pT at a polynomial rate, provided the Mellin transform of pT decays
exponentially fast.

Theorem 2.2. For any β > 0, γ > 0 and L > 0, introduce the class of functions

C(β, γ, L) =

{
f :

∫ ∞
−∞
|M[f ](γ + iv)| eβ|v| dv < L

}
.

Assume that pT ∈ C(β, γ, L) for some β > 0 and L > 0, and

max((aT + 1)/2, 3/4) < γ < bT . (6)

Then for some constant Cγ,L depending on γ and L only, it holds

sup
x≥0

E
[{
xγ|pT (x)− pT,n(x)|

}2
]
≤ Cγ,L ×

{
e−2β/hn + 1

n
h

2(γ−1)
n eπ/hn , γ < 1,

e−2β/hn + 1
n
eπ/hn , γ ≥ 1.

(7)
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By next choosing

hn =

{
π+2β

logn−2(1−γ) log logn
, γ < 1,

(π + 2β)/ log n, γ ≥ 1,
(8)

we arrive at the rate

sup
x≥0

√
E
[{
xγ|pT (x)− pT,n(x)|

}2
]
.

{
n−

β
π+2β log

2(1−γ)β
π+2β n, γ < 1,

n−
β

π+2β , γ ≥ 1
(9)

as n→∞.

With a little bit more effort one can prove the strong uniform convergence of the estimate
pn,T .

Theorem 2.3. Under conditions of Theorem 2.2 and for γ < 1

sup
pT∈C(β,γ,L)

sup
x≥0

{
xγ|pT,n(x)− pT (x)|

}
= Oa.s.

(
n−

β
π+2β log

2(1−γ)β
π+2β n

)
.

Let us turn now to some examples.

Example 2.4. Consider the class of gamma densities

pT (x;α) =
xα−1 · e−x

Γ(α)
, x ≥ 0

for α > 0. Since

M[pT ](z) =
Γ(z + α− 1)

Γ(α)
, Re(z) > 0,

we derive that pT ∈ C(β, γ, L) for all 0 < β < π/2 and γ > 0 due to the asymptotic properties
of the Gamma function (see Lemma 7.3 in Appendix). As a result, Theorem 2.2 implies

sup
x≥0

E
[{
xγ|pT (x)− pT,n(x)|

}2
]
. n−ρ, n→∞

for any ρ < 1/2, provided γ ≥ 1.

Example 2.5. Let us look at the family of densities

pT (x; q) =
q sin(π/q)

π

1

1 + xq
, q ≥ 2, x ≥ 0.

We have

M[pT ](z) =
sin(π/q)

sin(πz/q)
, 0 < Re(z) < q.

Therefore pT ∈ C(β, γ, L) for all 0 < β < π/q and γ > 0, and

sup
x≥0

E
[{
xγ|pT (x)− pT,n(x)|

}2
]
. n−ρ, n→∞

for any ρ < 1/(1 + q/2), provided γ ≥ 1.
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Theorem 2.6. Consider the class of functions

D(β, γ, L) =

{
f :

∫ ∞
−∞
|M[f ](γ + iv)| (1 + |v|β) dv < L

}
,

and assume that pT ∈ D(β, γ, L) for some β > 0 and L > 0 and γ as in (6). Then for some
constant Dγ,L, it holds

sup
x≥0

E
[{
xγ|pT (x)− pT,n(x)|

}2
]
≤ Dγ,L ×

{
h2β
n + 1

n
h

2(γ−1)
n eπ/hn , γ < 1,

h2β
n + 1

n
eπ/hn , γ ≥ 1.

(10)

By choosing

hn =
π

log n− 2 (β + 1− γ) log log n
, (11)

if γ < 1 and

hn =
π

log n− 2β log log n
(12)

for γ ≥ 1, we arrive at

sup
x≥0

√
E
[{
xγ|pT (x)− pT,n(x)|

}2
]
. log−β(n), n→∞. (13)

Remark 2.7. Due to the relation

M[pT ](γ + iv) = F [eγ·pT (e·)](v), aT < γ < bT ,

the conditions pT ∈ C(β, γ, L) and pT ∈ D(β, γ, L) are closely related to the smoothness
properties of the function eγxpT (ex). For example, if pT ∈ C(β, γ, L), then∫ ∞

−∞
|F [eγ·pT (e·)](v)| eβ|v| dv < L

and the function eγxpT (ex) is called supersmooth in this case, see Meister [7] for the discussion
on different smoothness classes in the context of the additive deconvolution problems.

The rates of Theorem 2.2 and Theorem 2.6 summarized in Table 1 are in fact optimal (up to
a logarithmic factor) in minimax sense for the classes C(β, γ, L) and D(β, γ, L), respectively.

Theorem 2.8. Fix some β > 1. There are ε > 0 and x > 0 such that

lim inf
n→∞

inf
pn

sup
pT∈C(β,γ,L)

P⊗npT

(
|pT (x)− pn(x)| ≥ ε n−

β
π+2β log−ρ(n)

)
> 0,

lim inf
n→∞

inf
pn

sup
pT∈D(β,γ,L)

P⊗npT

(
|pT (x)− pn(x)| ≥ ε log−β(n)

)
> 0,

for some ρ > 0, where the infimum is taken over all estimators (i.e. all measurable functions of
X1, . . . , Xn) of pT and P⊗npT is the distribution of the i.i.d. sample X1, . . . , Xn with X1 ∼ WT

and T ∼ pT .
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C(β, γ, L) D(β, γ, L)

γ < 1 γ ≥ 1

n−
β

π+2β log
2(1−γ)β
π+2β (n) n−

β
π+2β log−β(n)

Table 1: Minimax rates of convergence for the classes C(β, γ, L) and D(β, γ, L).

3 Generalised statistical Skorohod embedding problem

In this section we generalize the statistical Skorohod embedding problem to the case of Lévy
processes. In particular, we consider the following problem.

Problem 3.1. Based on i.i.d. sample X1, . . . , Xn from the distribution of µ estimate the
distribution of the random time T ≥ 0 independent of a Lévy process L such that LT ∼ µ.

Note that the situation here is much more difficult than before, since the Lévy processes
do not have, in general, the scaling property (1). Hence the approach based on the Mellin
deconvolution technique can not be applied any longer. Let (Lt, t ≥ 0) be a Lévy process with
the triplet (µ, σ2, ν). Define a curve in C

` :=
{

Re(ψ(u)) + i Im(ψ(u)), u ∈ R+

}
,

where ψ(u) = −t−1 log(E(exp(iuLt))). Our approach to reconstruct the distribution of T is
based on the simple identity

F [pX ](λ) = E[exp(iλLT )] = L[pT ](ψ(λ)). (14)

It is well known that the Laplace transform of L[pT ](u) is analytic in the domain
{

Re(u) > 0
}
.

The following proposition shows that the object M[L[pT ]](z) is well defined and that it can
be related to the Fourier transform of pX , which in turn can be estimated from the data.

Proposition 3.2. Let us assume that Re(ψ(u))→∞ as u→∞ and that

|Im(ψ(u))|
Re(ψ(u))

< A <∞ (15)

for all u > 0 and some A > 0. Moreover, let pT be (essentially) bounded. Then, for 0 <
Re(z) < 1 it holds that

M[L[pT ]](z) =

∫ ∞
0

uz−1L[pT ](u)du =

∫
`

wz−1L[pT ](w)dw.
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Figure 1: A typical shape of the contour `.

Remark 3.3. The condition (15) is fulfilled if, for example, the diffusion part of L is nonzero
or if ψ is real and ψ(u)→∞ as u→∞.

Under the assumptions of Proposition 3.2 we may write,

M[L[pT ]](z) =

∫ ∞
0

[ψ(λ)]z−1 L[pT ](ψ(λ))ψ′(λ)dλ,

where L[pT ](ψ(λ)) = F [pX ](λ) due to (14). On other hand, one may straightforwardly derive,

M[L[pT ]](z) =M[pT ](1− z)Γ(z), 0 < Re(z) < 1,

i.e.,

M[pT ](z) =
M[L[pT ]](1− z)

Γ(1− z)
=

∫∞
0

[ψ(λ)]−z F [pX ](λ)ψ′(λ)dλ

Γ(1− z)
, 0 < Re(z) < 1. (16)

In principle one can now replace the Fourier transform of pX in (16) by its empirical counterpart
based on the data. However, in this case we need to regularize the estimate of M[pT ](z) to
perform the inverse Mellin transform. To this end consider the approximation

M[L[pT ]](z) ≈ 1

n

n∑
k=1

∫ An

0

[ψ(λ)]z−1 eiXkλψ′(λ)dλ =:
1

n

n∑
k=1

Φn(z,Xk)
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and define in view of (16),

pT,n(x) :=
1

2πn

n∑
k=1

∫ Un

−Un

Φn(1− γ − iv,Xk)

Γ(1− γ − iv)
x−γ−ivdv, for 0 < γ < 1 (17)

where Un, An →∞ in a suitable way as n→∞. Note that in many cases the function Φn can
be found in closed form. For example, consider the case of subordinated stable Lévy process
with ψ(λ) = |λ|α. It then holds for Re(z) > 0,

Φn(z, x) =

∫ An

0

[ψ(λ)]z−1 eixλψ′(λ)dλ

= α

∫ An

0

λα(z−1)eixλλα−1 dλ

= α

∫ An

0

λαz−1eixλdλ

=
Aαzn
z
F1(αz; 1 + αz; iAnx),

where F1 is Kummer’s function. In the next two theorems we prove a remarkable result showing
that the estimate pT,n(x) converges to p(x) at the same rate (up to a logarithmic factor in
the polynomial case) as in the case of the time-changed Brownian motion.

Theorem 3.4. Suppose that ψ satisfies the conditions of Proposition 3.2, and that moreover∫
{|x|>1} |x|ν(dx) < ∞. Furthermore suppose that there is a 1/2 < γ < 1 such that pT ∈
C(β, γ, L) (cf. Theorem 2.2) for some β > 0, and∫ ∞

1

1

λ2γ−1−ε |F [pX ](λ)| dλ <∞, (18)

for some ε > 0. Then under the choice

An = n
1

4(1−γ)+2ε (19)

and

Un =
ε

(2− 2γ + ε) (2β + π)
log n− 2γ − 1

2β + π
log log n, (20)

we get

sup
x≥0

√
E
[
x2γ |pn(x)− pT (x)|2

]
. n−

β
2β+π

ε
2(1−γ)+ε logβ

2γ−1
2β+π n, n→∞. (21)

Thus for γ → 1 we recover the rates of Theorem 2.2 up to a logarithmic factor.

Remark 3.5. Since∫ ∞
1

1

λ2γ−1−ε |F [pX ](λ)| dλ =

∫ ∞
1

1

λ2γ−1−ε |L[pT ](ψ(λ))| dλ,

the condition (18) is, for example, fulfilled for some ε > 0 if Re[ψ(λ)] & λ for λ→ +∞ and
pT is continuous in 0 with pT (0) <∞.
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In the case pT ∈ D(β, γ, L) we get exactly the same logarithmic rate as in Theorem 2.6.

Theorem 3.6. Suppose that ψ and γ are as in Theorem 3.4, and that now pT ∈ D(β, γ, L)
(cf. Theorem 2.6) for some β > 0. Further suppose that (18) holds. Then under the choice

An = n
1

4(1−γ)+2ε (22)

(hence the same as in Theorem 3.4) and

Un =
ε

π (2− 2γ + ε)
log n− 2β + 2γ − 1

π
log log n, (23)

we get

sup
x≥0

√
E
[
x2γ |pn(x)− pT (x)|2

]
. log−β(n), n→∞.

Discussion The rates in Theorem 3.4 and Theorem 3.6 are optimal in minimax sense, since
they are basically coincides (up to a logarithmic factor) with the rates in Theorem 2.2 and
Theorem 2.6, respectively. As can be seen from the proof of Theorem 2.8 and Remark 3.5, the
lower bonds continue to hold true under the additional assumption (18). Let us also stress that
the class C(β, γ, L) is quite large and contains the well known families of distributions such as
Gamma, Beta and Weibull families. It follows from Theorem 3.4 that for all these families our
estimator pn,T converges at a polynomial rate.

4 Applications

4.1 Estimation of the variance-mean mixture models

The variance-mean mixture of the normal distribution is defined as

p(x) =

∫ ∞
0

(2πσ2u)−1/2 exp(−(x− µu)2/(2σ2u)) g(u)du,

where g(u) is a mixing density on R+. The variance-mean mixture models play an important
role in both the theory and the practice of statistics. In particular, such mixtures appear as
limit distributions in asymptotic theory for dependent random variables and they are useful for
modeling data stemming from heavy-tailed and skewed distributions, see, e.g. [1] and [3]. As
can be easily seen, the variance-mean mixture distribution p coincides with the distribution
of the random variable σWT + µT, where T is the random variable with density g, which is
independent of W. The class of variance-mean mixture models is rather large. For example,
the class of the normal variance mixture distributions (µ = 0) can be described as follows:
p is the density of a normal variance mixture (equivalently p is the density of WT ) if and
only if F [p](

√
u) is a completely monotone function in u. The problem of statistical inference
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for variance-mean mixture models has been already considered in the literature. For example,
Korsholm, [6] proved the consistency of the non-parametric maximum likelihood estimator
for the parameters σ and µ, g being treated as an infinite dimensional nuisance parameter.
In Zhang [11] the problem of estimating the mixing density in location (mean) mixtures was
studied. To the best of our knowledge, we here address, for the first time, the problem of
non-parametric inference for the mixing density g in full generality and derive the minimax
convergence rates. In fact, Theorem 3.4 and Theorem 3.6 directly apply not only to normal
variance-mean mixture models, but also to stable variance-mean mixtures.

4.2 Estimation of time-changed Lévy models

Let L = (Lt)t≥0 be a one-dimensional Lévy process and let T = (T (s))s≥0 be a non-negative,
non-decreasing stochastic process independent of X with T (0) = 0. A time-changed Lévy
process Y = (Ys)s≥0 is then defined as Ys = XT (s). The process T is usually referred to as
time change or subordinator. Consider the problem of statistical inference on the distribution
of the time change T based on the low-frequency observations of the time-changed Lévy
process Xt = LT (t). Suppose that n observations of the Lévy process Lt at times tj = j∆,
j = 0, . . . , n, are available. If the sequence T (tj)−T (tj−1), j = 1, . . . , n, is strictly stationary
with the invariant stationary distribution π, then for any bounded “test function”f

1

n

n∑
j=1

f
(
LT (tj) − LT (tj−1)

)
→ Eπ[f(LT (∆))], n→∞, (24)

The limiting expectation in (24) is then given by

Eπ[f(LT (∆))] =

∫ ∞
0

E[f(Ls)]π(ds).

Taking f(z) = fu(z) = exp(iu>z), u ∈ Rd, we arrive at the the following representation for
the c.f. of LT (s):

E
[
exp

(
iuLT (∆)

)]
=

∫ ∞
0

exp(tψ(u))π(dt) = Lπ(ψ(u)), (25)

where ψ(u) := −t−1 log(φt(u)) with φt(u) = E exp(iu>Lt) being the characteristic exponent
of the Lévy process L and Lπ is the Laplace transform of π. Suppose we want to estimate the
invariant measure π (or its density) from the discrete time observations of LT , then we are in
the setting of the generalized statistical Skorohod embedding with the only difference that the
elements of the sample LT (t1)−LT (t0), . . . , LT (tn)−LT (tn−1) are not necessarily independent.
However, under appropriate mixing properties of the sequence T (tj)−T (tj−1), j = 1, . . . , n,
one can easily generalize the results of Section 3 to the case of dependent data (see, e.g. [2]
for similar results). Let us note that the statistical inference for time-changed Lévy processes
based on high-frequency observations of Y has been the subject of many studies, see, e.g.
Bull, [4] and Todorov and Tauchen, [9] and the references therein.
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5 Numerical examples

Barndorff-Nielsen et al. [1] consider a class of variance-mean mixtures of normal distributions
which they call generalized hyperbolic distributions. The univariate and symmetric members
of this family appear as normal scale mixtures whose mixing distribution is the generalized
inverse Gaussian distribution with density

pT (v) =
(κ/δ)λ

2Kλ(δκ)
vλ−1 exp

(
−1

2

(
κ2v +

δ2

v

))
, v > 0, (26)

where K is a modified Bessel function. The resulting normal scale mixture has probability
density function

pX(x) =
κ1/2

(2π)1/2δλ
Kλ(δκ)(δ2 + x2)

1
2(λ− 1

2)Kλ− 1
2

(
κ(δ2 + x2)1/2

)
.

Let us start with a simple example, Gamma density pT (x) = x exp(−x), x ≥ 0, which is a
special case of (26) for δ = 0, λ = 2 and κ =

√
2. We simulate a sample of size n from

the distribution of X, and construct the estimate (5) with the bandwidth hn given (up to a
constant not depending on n) by (8) and γ = 0.8. In Figure 2 (left), one can see 50 estimated
densities based on 50 independent samples from WT of size n = 1000, together with pT in
red. Next we estimate the distribution of the loss supx∈[0,10]

{
|pT,n(x)− pT (x)|

}
based on 100

independent repetitions of the estimation procedure. The corresponding box plots for different
n are shown in Figure 2 (right).

Let us now turn to a more interesting example of variance-mean mixtures. We take X = T+WT

and choose T to follow a Gamma distribution with the density pT (x) = x exp(−x), x ≥ 0.
The estimate (17) is constructed as follows. First note that ψ(λ) = −iλ + λ2/2. In order
to numerically compute the function Φn(1 − z,Xk) for z = γ + iv with γ < 1, we use the
decomposition

1

n

n∑
k=1

Φn(1− z,Xk) =

∫ An

0

[ψ(λ)]−z [φn(λ)− e−mnψ(λ)]ψ′(λ) dλ (27)

+mz−1
n Γ(1− z) +O

(
m−(1−γ)
n exp(−mnA

2
n/2)

)
,

where φn(λ) = 1
n

∑n
k=1 e

iλXk is the empirical characteristic function and mn = 1
n

∑n
k=1Xk →

2. This decomposition follows from a Cauchy argument similar as in the proof of Proposition 3.2
and is quite useful to reduce the cost of computing the integral in (27), since the integral on
the r.h.s. of (27) is much easier to compute due to the asymptotic relation φn(λ)−e−mnψ(λ) =
O(λ2), λ→ 0. Next we take γ = 0.7, An and hn as in Theorem 3.4 with ε = 0.5 and β = π/2
(see Example 2.4). Figure 3 shows the performance of the estimate defined in (17): on the
left-hand side 20 independent realizations of the estimate pT,n for n = 1000 are shown together
with the true density pT . The box plots of the loss supx∈[0,10]

{
|pT,n(x) − pT (x)|

}
based on

100 runs of the algorithm are depicted on the right-hand side of Figure 3. By comparing the
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Figure 2: Left: the Gamma density (red) and its 50 estimates (grey) for the sample size
n = 1000. Right: the box plots of the loss supx∈[0,10]

{
|pT,n(x)− pT (x)|

}
for different sample

sizes.

right-hand sides of Figure 2 and Figure 3, we observe that the performances of the estimates
(17) and (5) are similar, although the estimate (5) seem to have higher variance. This supports
the claim of Theorem 3.4 about the same convergence rates in statistical Skorohod embedding
and generalized statistical Skorohod embedding problems, given that pT ∈ C(β, γ, L).

6 Proofs

6.1 Proof of Theorem 2.2

First let us estimate the bias of pT,n. We have

E[pT,n(x)] =
1√
π

∫ ∞
−∞

x−γ−ivK(vhn)
M[p|X|](2(γ + iv)− 1)

2γ+ivΓ(γ − 1/2 + iv)
dv

=
1

2π

∫ 1/hn

−1/hn

x−γ−ivM[pT ](γ + iv) dv.

Hence

pT (x)− E[pT,n(x)] =
1

2π

∫
{|v|≥1/hn}

M[pT ](γ + iv)x−γ−ivdv

12
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Figure 3: Left: the Gamma density (red) and its 20 estimates (grey) for the sample size
n = 5000. Right: the box plots of the loss supx∈[0,10]

{
|pT,n(x)− pT (x)|

}
for different sample

sizes.

and we then have the estimate,

sup
x≥0

{
xγ|E[pT,n(x)]− pT (x)|

}
≤ 1

2π

∫
{|v|≥1/hn}

|M[pT ](γ + iv)| dv

≤ e−β/hn

2π

∫
{|v|≥1/hn}

e−β|v| |M[pT ](γ + iv)| eβ|v|dv

≤ L
e−β/hn

2π
. (28)

As to the variance, by the simple inequality Var
(∫

ftdt
)
≤
(∫ √

Var[ft]dt
)2

, which holds

for any random function ft with
∫
E[f 2

t ]dt <∞, we get

Var[xγpT,n(x)] = Var

[
1√
π

∫ ∞
−∞

x−ivK(vhn)
Mn[p|X|](2(γ + iv)− 1)

2γ+ivΓ(γ − 1/2 + iv)
dv

]

≤ 1

π22γ

∫ 1/hn

−1/hn

√
Var

(
Mn[p|X|](2(γ + iv)− 1)

)
|Γ(γ − 1/2 + iv)|

dv

2

≤ 1

2nπ

∫ 1/hn

−1/hn

√
Var
(
|X|2(γ+iv−1)

)
|Γ(γ − 1/2 + iv)|

dv

2

≤ 1

2nπ

[∫ 1/hn

−1/hn

√
E [|WT |4(γ−1)]

|Γ(γ − 1/2 + iv)|
dv

]2

. (29)

13



Note that

E
[
|WT |4(γ−1)

]
=

∫ ∞
0

E
[
|Wt|4(γ−1)

]
pT (t) dt

= E
[
|W1|4(γ−1)

] ∫ ∞
0

t2(γ−1)pT (t)dt

=: C2(γ) <∞,

due to (6). We obtain from (29) due to Corollary 7.4 (see Appendix) and by taking into
account (6),

Var[xγpT,n(x)] ≤ C2(γ)

2nπ
C3h

2(γ−1)
n eπ/hn =

C3(γ)

n
h2(γ−1)
n eπ/hn .

and so (7) follows with Cγ,L = max(C3(γ), L
2

4π2 ). Finally, by plugging (8) into (7) we get (9)
and the proof is finished.

6.2 Proof of Theorem 2.6

The proof is analog to the one of Theorem 2.2 , the only difference is the bias estimate (28)
that now becomes

sup
x≥0

{
xγ|E[pT,n(x)]− pT (x)|

}
≤ L

2π
hβn,

which gives (10) with a constant Dγ,L = max(C3(γ), L
2

4π2 ) again. Next with the choice (11)
we obtain from (10) the logarithmic rate (13).

6.3 Proof of Theorem 2.8

Our construction relies on the following basic result (see [10] for the proof).

Theorem 6.1. Suppose that for some ε > 0 and n ∈ N there are two densities p0,n, p1,n ∈ G
such that

d(p0,n, p1,n) > 2εvn.

If the observations in model n follow the product law Pp,n = P⊗np under the density p ∈ G and

χ2(p1,n | p0,n) ≤ n−1 log(1 + (2− 4δ)2)

holds for some δ ∈ (0, 1/2), then the following lower bound holds for all density estimators p̂n
based on observations from model n:

inf
p̂n

sup
p∈G

P⊗np
(
d(p̂n, p) ≥ εvn

)
≥ δ.

If the above holds for fixed ε, δ > 0 and all n ∈ N, then the optimal rate of convergence in a
minimax sense over G is not faster than vn.

14



6.3.1 Proof of a lower bound for the class C(β, γ, L)

Let us start with the construction of the densities p0,n and p1,n. Define for any ν > 1 and
M > 0 two auxiliary functions

q(x) =
ν sin(π/ν)

π

1

1 + xν
, x ≥ 0

and

ρM(x) =
1√
2π
e−

log2(x)
2

sin(M log(x))

x
, x ≥ 0.

The properties of the functions q and ρM are collected in the following lemma.

Lemma 6.2. The function q is a probability density on R+ with the Mellin transform

M[q](z) =
sin(π/ν)

sin(πz/ν)
, Re[z] > 0.

The Mellin transform of the function ρM is given by

M[ρM ](u+ iv) =
1

2

[
e(u−1+i(v+M))2/2 − e(u−1+i(v−M))2/2

]
. (30)

Hence ∫ ∞
0

ρM(x)dx =M[ρM ](1) = 0.

Set now for any M > 0

q0,M(x) := q(x), q1,M(x) := q(x) + (q ∨ ρM)(x),

where f ∨ g stands for the multiplicative convolution of two functions f and g on R+ defined
as

(f ∨ g)(x) :=

∫ ∞
0

f(t)g(x/t)

t
dt, x ≥ 0.

The following lemma describes some properties of q0,M and q1,M .

Lemma 6.3. For any M > 0 the function q1,M is a probability density satisfying

‖q0,M − q1,M‖∞ = sup
x∈R+

|q0,M(x)− q1,M(x)| & exp(−Mπ/ν), M →∞.

Moreover, q0,M and q1,M are in C(β, γ, L) for all 0 < β < π/ν and γ > 0 with L depending
on γ.

15



Proof. First note that∫ ∞
0

q1,M(x)dx = 1 +

∫ ∞
0

(q ∨ ρM)(x) = 1 +M[q](1)M[ρM ](1) = 1.

Furthermore, due to the Parseval identity

(q ∨ ρM)(y) =

∫ ∞
0

1√
2π
e−

log2(x)
2

sin(M log(x))

x2

1

1 + (y/x)ν
dx

=

∫ ∞
−∞

1√
2π
e−

v2

2 sin(Mv)
e−v

1 + e−ν(v−yl)
dv

= e− log(y)

∫ ∞
−∞

1√
2π
e−

v2

2 sin(Mv)
e(yl−v)

1 + eν(log(y)−v)
dv

=
e− log(y)

2π

∫ ∞
−∞

1√
2π
e−

v2

2 sin(Mv)
e(log(y)−v)

1 + eν(log(y)−v)
dv

=
e− log(y)

2π

∫ ∞
−∞

e−iu log(y)

[
H(u+M)−H(u−M)

2

]
F [R](u)du,

where R(x) = ex

1+eνx
and H(x) = e−x

2/2. Note that

F [R](u) =

∫ ∞
−∞

ex+iux

1 + eνx
dx =

1

ν

∫ ∞
−∞

ev/ν+iuv/ν

1 + ev
dx =

1

ν
Γ

(
1 + iu

ν

)
Γ

(
1− 1 + iu

ν

)
.

Hence due to (53)

sup
y∈R+

|q0,M(y)− q1,M(y)| = sup
y∈R+

|(q ∨ ρM)(y)| & exp(−Mπ/ν), M →∞.

The second statement of the lemma follows from Lemma 6.2 and the fact that M[q ∨ ρM ] =
M[q]M[ρM ].

Let T0,M and T1,M be two random variables with densities q0,M and q1,M , respectively. Then
the density of the r.v. |WTi,M |, i = 0, 1, is given by

pi,M(x) :=
2√
2π

∫ ∞
0

λ−1/2e−
x2

2λ qi,M(λ) dλ i = 0, 1.

For the Mellin transform of pi,M we get

M[pi,M ](z) = E
[
|W1|z−1

]
E
[
T

(z−1)/2
i,M

]
= E

[
|W1|z−1

]
M[qi,M ]((z + 1)/2)

=
2z/2√

2π
Γ(z/2)M[qi,M ]((z + 1)/2), i = 0, 1. (31)
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Lemma 6.4. The χ2-distance between the densities p0,M and p1,M fulfills

χ2(p1,M |p0,M) =

∫
(p1,M(x)− p0,M(x))2

p0,M(x)
dx . e−Mπ(1+2/ν), M →∞.

Proof. First note that p0,M(x) > 0 on [0,∞). Since

p0,M(x) =
2√
2π

ν sin(π/ν)

π

∫ ∞
0

λ−1/2e−
x2

2λ
1

1 + λν
dλ

/y = 1/λ/ =
2√
2π

ν sin(π/ν)

π

∫ ∞
0

y1/2e−y
x2

2
1

y2(1 + y−ν)
dy

=
2√
2π

ν sin(π/ν)

π

∫ ∞
0

e−y
x2

2
yν−1/2−1

(1 + yν)
dy

� 2√
2π

ν sin(π/ν)

π
Γ(ν − 1/2)x−2ν+1, x→∞,

we have p0,M(x) & x−2ν+1, x→∞. Furthermore, due to (31) and the Parseval identity∫ ∞
0

x2ν−1 |p0,M(x)− p1,M(x)|2 dx =

2−4+2ν

π

∫ γ+i∞

γ−i∞
M[q ∨ ρM ]

(
z + 1

2

)
Γ
(z

2

)
M[q ∨ ρM ]

(
2ν − z + 1

2

)
Γ

(
2ν − z

2

)
dz,

(32)

where M[q ∨ ρM ](z) =M[q](z)M[ρM ](z). Due to (30)

|M[ρM ](u+ iv)| ≤ e
(u−1)2

2
φ(v +M) + φ(v −M)

2
(33)

with φ(v) = e−
v2

2 . Combining (53) (Appendix), (32) and (33), we derive

χ2(p1,M |p0,M) =

∫
(p1,M(x)− p0,M(x))2

p0,M(x)
dx

.
∫ ∞

0

(p1,M(x)− p0,M(x))2dx+

∫ ∞
0

x2ν−1(p1,M(x)− p0,M(x))2dx

.
∫ ∞
−∞
|v|ν−1e−|v|π/2−|v|π/ν (φ(v/2 +M) + φ(v/2−M))2 dv

. Mν−1e−Mπ(1+2/ν), M →∞.

Fix some κ ∈ (0, 1/2). Due to Lemma 6.4, the inequality

nχ2(p1,M |p0,M) ≤ κ

17



holds for M large enough, provided

M =
1 + ε

π(1 + 2/ν)
(log(n) + (ν − 1) log log(n))

for arbitrary small ε > 0. Hence Lemma 6.3 and Theorem 6.1 imply

inf
p̂n

sup
p∈C(β,γ,L)

Pp,n
(
‖p̂n − p‖∞ ≥ cvn

)
≥ δ.

for any β < π/ν < π, any γ > 0, some constants c > 0, δ > 0 and vn = n−β/(π+2β) log−
π−β
π+2β (n).

6.3.2 Proof of a lower bound for the class D(β, γ, L)

Define for any ν > 1, α > 0 and M > 0,

q(x) = [2Γ(ν)]−1 ×

{
logν−1(1/x), 0 ≤ x ≤ 1,

x−2 logν−1(x), x > 1

and

ρM(x) =
1√
2π
e−

log2(x)
2

sin(M log(x))

x log(x)
, x ≥ 0.

The properties of the functions q and ρM can be found in the next lemma.

Lemma 6.5. The function q is a probability density on R+ with the Mellin transform

M[q](z) =
1

2

[
z−ν + (2− z)−ν

]
, 0 < Re[z] < 2.

The Mellin transform of the function ρM is given by

M[ρM ](u+ iv) = e
(u−1)2

2
G(u, v +M)−G(u, v −M)

2
, (34)

where G(u, v) =
∫ v
−∞ e

−x
2

2
+ix(u−1)dx. Hence

ζM :=

∫ ∞
0

ρM(x)dx =M[ρM ](1) =

∫ M

−M
e−

x2

2 dx.

Set now for any M > 0

q0,M(x) := q(x), q1,M(x) := (1− ζM)q(x) + (q ∨ ρM)(x),

where f ∨ g stands for the multiplicative convolution of two functions f and g on R+ defined
via

(f ∨ g)(x) :=

∫ ∞
0

f(t)g(x/t)

t
dt.
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Lemma 6.6. For any M > 0, the function q1,M is a probability density satisfying

sup
x∈(1−δ,1+δ)

|q0,M(x)− q1,M(x)| � | cos(πν/2)|M−ν+1, M →∞,

where δ > 0 is a fixed number. Moreover, q0,M and q1,M are in D(β, γ, L) for all β < ν − 1
and γ ∈ (0, 2).

Proof. First note that∫ ∞
0

q1,M(x)dx = 1 +

∫ ∞
0

(q ∨ ρM)(x)− ζM = 1 +M[ρM ](1)×M[q](1)− ζM = 1.

Furthermore, (q ∨ ρM)(y) = [2Γ(ν)]−1 [I1(y) + I2(y)] with

I1(y) =

∫ ∞
y

e−
log2(x)

2α x−2 sin(M log(x))

log(x)
logν−1(x/y)dx

=

∫ ∞
log(y)

e−
z2

2α
−z sin(Mz)

z
(z − log(y))ν−1dz

and

I2(y) =

∫ y

0

e−
log2(x)

2α y−2 sin(M log(x))

log(x)
logν−1(y/x)dx

=

∫ log(y)

−∞
e−

z2

2α
+zy−2 sin(Mz)

z
(log(y)− z)ν−1dz.

By taking y = exp(A), we get for I1(y)

I1(y) =

∫ ∞
0

e−
(z+A)2

2α
−(z+A) sin(M(z + A))

z + A
zν−1dz

= cos(AM)

∫ ∞
0

e−
(z+A)2

2α
−(z+A)

z + A
sin(Mz)zν−1dz

+ sin(AM)

∫ ∞
0

e−
(z+A)2

2α
−(z+A)

z + A
cos(Mz)zν−1dz.

The well known Erdélyi lemma implies∫ ∞
0

e−
(z+A)2

2α
−(z+A)

z + A
sin(Mz)zν−1dz � e−

A2

2α
−A

A
Γ(ν) sin(πν/2)M−ν , M →∞

and ∫ ∞
0

e−
(z+A)2

2α
−(z+A)

z + A
cos(Mz)zν−1dz � e−

A2

2α
−A

A
Γ(ν) cos(πν/2)M−ν , M →∞.
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Hence

I1(eA) � e−
A2

2α
−A

A
Γ(ν) sin(AM + πν/2)M−ν ,M →∞. (35)

Analogously

I2(eA) = e−2A

∫ A

−∞
e−

z2

2α
+z sin(Mz)

z
(A− z)ν−1dz

= e−2A

∫ ∞
0

e−
(A−z)2

2α
+A−z sin(M(A− z))

A− z
zν−1dz

= e−2A sin(AM)

∫ ∞
0

e−
(A−z)2

2α
+A−z cos(Mz)

A− z
zν−1dz

−e−2A cos(AM)

∫ ∞
0

e−
(A−z)2

2α
+A−z sin(Mz)

A− z
zν−1dz

� e−
A2

2α
−A

A
Γ(ν) sin(AM − πν/2)M−ν .

Combining the previous estimates, we arrive at

I2(eA) + I1(eA) = 2
e−

A2

2α
−A

A
Γ(ν) sin(AM) cos(πν/2)M−ν .

It remains to note that the maximum of r.h.s of (35) is attained for A ∈ {π/2M, 3π/2M}
and

sup
A

[I2(eA) + I1(eA)] � Γ(ν)| cos(πν/2)|M−ν+1.

The property q1,M ∈ D(β, γ, L) for all β < ν − 1 and γ ∈ (0, 2) with L depending on γ,
follows from the identityM[q1,M ](z) =M[q](z)(1− ζM) +M[ρM ](z)M[q](z) and (34).

Let T0,M and T1,M be two random variables with densities q0,M and q1,M respectively. The the
density of the r.v. |WTi,M |, i = 0, 1, is given by

pi,M(x) :=
2√
2π

∫ ∞
0

λ−1/2e−
x2

2λ qi,M(λ)dλ, i = 0, 1.

For the Mellin transform of pi,M , we have

M[pi,M ](z) = E
[
|W1|z−1

]
E
[
T

(z−1)/2
i,M

]
= E

[
|W1|z−1

]
M[qi,M ]((z + 1)/2)

=
2z/2√

2π
Γ(z/2)M[qi,M ]((z + 1)/2). (36)
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Lemma 6.7. The χ2-distance between the densities p0,M and p1,M satisfies

χ2(p1,M |p0,M) :=

∫
(p1,M(x)− p0,M(x))2

p0,M(x)
dx . e−Mπ/2, M →∞.

Proof. First note that p0,M(x) > 0 on [0,∞). Since∫ 1

0

λ−1/2e−
x2

2λ logν−1(1/λ)dλ =

∫ 1

0

λ−1/2e−
x2

2λ logν−1(1/λ)dλ

/y = 1/λ, λ = 1/y/ =

∫ ∞
1

y−3/2e−x
2y/2 logν−1(y)dy

=

∫ ∞
x2

x−2(y/x2)−3/2e−y/2 logν−1(y/x2)dy

= x

∫ ∞
x2

y−3/2e−y/2 logν−1(y/x2)dy . e−x
2/2

and ∫ ∞
1

λ−3/2e−
x2

2λ logν−1(λ)dλ =

∫ 1

0

y−1/2e−
x2

2
y logν−1(1/y)dy

� Γ(1/2)√
2

x−1 logν−1(x2).

we have p0,M(x) & x−1, x→∞. Furthermore, due to (36) and the Parseval identity∫ ∞
0

xa−1 |p0,M(x)− p1,M(x)|2 dx =

2−4+a

π

∫ γ+i∞

γ−i∞
M[q ∨ ρM ]

(
z + 1

2

)
Γ
(z

2

)
M[q ∨ ρM ]

(
a− z + 1

2

)
Γ

(
a− z

2

)
dz, (37)

where M[q ∨ ρM ](z) =M[q](z)M[ρM ](z). Due to (34)

|M[ρM ](u+ iv)| ≤ e
(u−1)2

2
Φ(v +M) + Φ(v −M)

2
(38)

with Φ(v) =
∫ v
−∞ e

−x
2

2 dx. Combining (37) with properly chosen γ > 0, (38) and Lemma 7.3
(see Appendix), we derive

χ2(p1|p0) =

∫
(p1(x)− p0(x))2

p0(x)
dx .

∫ ∞
0

(p1(x)− p0(x))2dx+

∫ ∞
0

x(p1(x)− p0(x))2dx

.
∫ ∞
−∞

e−|v|π/2 (Φ(v/2 +M) + Φ(v/2−M))2 dv . e−Mπ/2, M →∞.
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Fix some κ ∈ (0, 1/2). Due to Lemma 6.7, the inequality

nχ2(p1,M |p0,M) ≤ κ

holds for M large enough, provided

M =
2(1 + ε)

π
log(n)

for arbitrary small ε > 0. Hence Lemma 6.6 and Theorem 6.1 imply

inf
p̂n

sup
p∈D(β,γ,L)

Pp,n
(
‖p̂n − p‖∞ ≥ cvn

)
≥ δ.

for any β < ν − 1, any γ ∈ (0, 2), some constants c > 0, δ > 0 and vn = log−β(n).

6.4 Proof of Proposition 2.3

It holds

pT,n(x)− E[pT,n(x)] =
1√
π

∫ 1/hn

−1/hn

x−γ−ivK(vhn)

2γ+iv

×
{
Mn[p|X|](2(γ + iv)− 1)−M[p|X|](2(γ + iv)− 1)

}
Γ((γ + iv)− 1/2)

dv.

Due to Proposition 7.1

sup
x≥0

{
xγ|E[pT,n(x)]− pT (x)|

}
≤ ∆n√

πn

∫ 1/hn

−1/hn

A1

2γ
log(e+ |v|)

Γ((γ + iv)− 1/2)
dv

with ∆n = Oa.s.(1).

6.5 Proof of Proposition 3.2

Let θmax be such that A = tan θmax. At the arc KR : w = Reiθ, −θmax < θ < θmax, it holds
that ∣∣∣∣∫

KR

wz−1L[pT ](w)dw

∣∣∣∣ ≤ Rθmax ·RRe z−1

∫
e−xR cos θmaxpT (x)dx

≤ BθmaxR
Re z

∫
e−xR cos θmaxdx = Bθmax

RRe z−1

cos θmax

→ 0,

for 0 < Re z < 1, where supx>0 pT (x) ≤ B.

22



6.6 Proof of Proposition 3.4

By (16) we derive for the bias of pT,n(x), x > 0,

|E[pT,n(x)]− pT (x)| =
∣∣∣∣ 1

2π

∫ Un

−Un

E [Φn(1− γ − iv,X1)]

Γ(1− γ − iv)
x−ivdv −

∫ ∞
−∞
M[pT ](γ + iv)x−γ−ivdv

∣∣∣∣
≤

∣∣∣∣∣ 1

2π

∫ Un

−Un

∫∞
An

[ψ(λ)]−γ−iv F [pX ](λ)ψ′(λ)dλ

Γ(1− γ − iv)
x−γ−ivdv

∣∣∣∣∣+
|x|−γ

2π

∫
{|v|>Un}

|M[pT ](γ + iv)| dv

=: (∗)1 + (∗)2

Similar to the proof of Theorem 2.2 we have,

(∗)2 ≤
|x|−γ

2π
e−βUn

∫
{|v|>Un}

|M[pT ](γ + iv)| eβ|v|dv ≤ e−βUn
|x|−γ L

2π
,

and by Lemma 7.2 and (53)

(∗)1 .
|x|−γ

2π

∫ Un

−Un

∫∞
An
λ−2γ+1 |F [pX ](λ)| dλ
|Γ(1− γ − iv)|

dv

. |x|−γUγ−1/2
n eUnπ/2

∫ ∞
An

λ−ε

λ2γ−1−ε |F [pX ](λ)| dλ . |x|−γU
γ−1/2
n eUnπ/2

Aεn
.

As for the variance

Var(pT,n(x)) =
1

(2π)2n
Var

[∫ Un

−Un

Φn(1− γ − iv,X1)

Γ(1− γ − iv)
x−γ−ivdv

]
≤ 1

(2π)2n
|x|−2γ

[∫ Un

−Un

√
Var[Φn(1− γ − iv,X1)]

|Γ(1− γ − iv)|
dv

]2

, (39)

where √
Var[Φn(1− γ − iv,X1)] ≤

∫ An

0

√
Var[[ψ(λ)]−γ−iv eiX1λψ′(λ)]dλ

=

∫ An

0

|ψ(λ)|−γ |ψ′(λ)|
√

Var[eiX1λ]dλ.

Due to Lemma 7.2 we have∫ An

1

|ψ(λ)|−γ |ψ′(λ)|
√

Var[eiX1λ]dλ .
∫ An

1

λ(1−2γ)dλ ≤ C0
A

2(1−γ)
n

1− γ

and in any case of Lemma 7.2 it holds∫ 1

0

|ψ(λ)|−γ |ψ′(λ)|
√

Var[eiX1λ]dλ ≤
∫ 1

0

|ψ(λ)|−γ |ψ′(λ)| dλ ≤ C1

1− γ
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for some natural constant C0, C1 > 0. Hence from (39) we get by (53),

|x|2γVar(pT,n(x)) ≤ 1

(2π)2n

(
CUγ−1/2

n eUnπ/2
A

2(1−γ)
n

1− γ

)2

=: (∗)3,

and by gathering (∗)1, (∗)2, and (∗)3,√
E
[
x2γ |pn(x)− p(x)|2

]
.

C

2π (1− γ)
√
n
Uγ−1/2
n eUnπ/2A2(1−γ)

n +
U
γ−1/2
n eUnπ/2

Aεn
+ e−βUn .

Next, the choices (19) and (20) lead to the desired result.

7 Appendix

Proposition 7.1. Let Zj, j = 1, . . . , n, be a sequence of independent identically distributed
random variables. Fix some u > 0 and define

ϕn(v) :=
1

n

n∑
j=1

exp {(u+ iv)Zj} , v ∈ R.

Furthermore let w be a positive monotone decreasing Lipschitz function on R+ such that

0 < w(z) ≤ 1√
log(e+ |z|)

, z ∈ R+. (40)

Suppose that E
[
epuZ

]
<∞ and E

[
|Z|p

]
<∞ for some p > 2. Then with probability 1

‖ϕn − ϕ‖L∞(R,w) = O

(√
log n

n

)
. (41)

Proof. Fix a sequence Ξn →∞ as n→∞. Denote

W1
n(v) :=

w(v)

n

n∑
j=1

(
e(u+iv)ZjI

{
euZj < Ξn

}
− E

[
e(u+iv)ZI

{
euZ < Ξn

}])
,

W2
n(v) :=

w(v)

n

n∑
j=1

(
e(u+iv)ZjI

{
euZj ≥ Ξn

}
− E

[
e(u+iv)ZI

{
euZ ≥ Ξn

}])
,

where Z is a random variable with the same distribution as Z1. The main idea of the proof is
to show that

|W1
n(v)| = Oa.s.

(√
log n

n

)
, (42)

|W2
n(v)| = Oa.s.

(√
log n

n

)
(43)
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under a proper choice of the sequence Ξn.
Step 1. The aim of the first step is to show (42). Consider the sequence Ak = ek, k ∈ N and
cover each interval [−Ak, Ak] by Mk = (b2Ak/γc+ 1) disjoint small intervals Λk,1, . . . ,Λk,Mk

of the length γ. Let vk,1, . . . , vk,Mk
be the centers of these intervals. We have for any natural

K > 0

max
k=1,...,K

sup
Ak−1<|v|≤Ak

|W1
n(v)| ≤ max

k=1,...,K
max

1≤m≤Mk

sup
v∈Λk,m

|W1
n(v)−W1

n(vk,m)|

+ max
k=1,...,K

max{
1≤m≤Mk:
|vk,m|>Ak−1

} |W1
n(vk,m)|.

Hence for any positive λ,

P

(
max

k=1,...,K
sup

Ak−1<|v|≤Ak
|W1

n(v)| > λ

)
≤ P

(
sup

|v1−v2|<γ
|W1

n(v1)−W1
n(v2)| > λ/2

)

+
K∑
k=1

∑{
1≤m≤Mk:
|vk,m|>Ak−1

}P(|W1
n(vk,m)| > λ/2). (44)

We proceed with the first summand in (44). It holds for any v1, v2 ∈ R

|W1
n(v1)−W1

n(v2)| ≤ 2 Ξn |w(v1)− w(v2)|+ 1

n

n∑
j=1

[∣∣e(u+iv1)Zj − e(u+iv2)Zj
∣∣ I {euZj < Ξn

}]
+
∣∣∣E [(e(u+iv1)Z − e(u+iv2)Z

)
I
{
euZ < Ξn

}]∣∣∣
≤ |v1 − v2| Ξn

[
2 Lw +

1

n

n∑
j=1

|Zj|+ E|Z|

]
, (45)

where Lω is the Lipschitz constant of w and Z is a random variable distributed as Z1. Next,
the Markov inequality implies

P

{
1

n

n∑
j=1

[
|Zj| − E|Z|

]
> c

}
≤ c−pn−p E

∣∣∣∣∣
n∑
j=1

[
|Zj| − E|Z|

]∣∣∣∣∣
p

for any c > 0. Note that

E

∣∣∣∣∣
n∑
j=1

[
|Zj| − E|Z|

]∣∣∣∣∣
p

≤ cpn
p/2,

for some constant cp depending on p and we obtain from (45)

P
{

sup
|v1−v2|<γ

|W1
n(v1)−W1

n(v2)| > 2γΞn(Lω + E|Z|+ c)
}
≤ Cp c

−pn−p/2.
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Hence if γΞn ≥ 1 and λ ≥ 4(Lω + E|Z|+ c) we get Now we turn to the second term on the
right-hand side of (44). Applying the Bernstein inequality, we get

P
{

sup
|v1−v2|<γ

|W1
n(v1)−W1

n(v2)| > λ/2
}
≤ Cp c

−pn−p/2.

P
(
|Re
[
W1

n(vk,m)
]
| > λ/4

)
≤ exp

(
− λ2n

32(Ξnw(Ak−1)λ/3 + w2(Ak−1)E[e2uZ ])

)
.

Similarly,

P
(
|Im
[
W1

n(vk,m)
]
| > λ/4

)
≤ exp

(
− λ2n

32(Ξnw(Ak−1)λ/3 + w2(Ak−1)E[e2uZ ])

)
.

Therefore∑
{|vk,m|>Ak−1}

P(|W1
n(vk,m)| > λ/2) ≤ (b2Ak/γc+ 1) exp

(
− λ2n

32(Ξnw(Ak−1)λ/3 + w2(Ak−1)E[e2uZ ])

)
.

Set now γ =
√

(log n)/n, λ = ζ
√

(log n)/n and Ξn =
√
n/ log(n), then

∑
{|vk,m|>Ak−1}

P(|W1
n(vk,m)| > λ/2) . Ak

√
n

log(n)
exp

(
− λ2n

32
(
Ξnw(Ak−1)λ/3 + w2(Ak−1)E[e2uZ ]

))

.
√

n

log(n)
exp

(
−k + k

[
1− ζ2 log(n)

32(1 + E[e2uZ ])

])
.

Assuming that ζ2 ≥ 32θ(1 + E[e2uZ ]) for some θ > 1, we arrive at

∞∑
k=2

∑
{|vk,m|>Ak−1}

P(|Wn(vk,m)| > λ/2) . e−k
n1/2−θ√
log(n)

, n→∞

Step 2. Now we turn to (43). Consider the sequence

Rn(v) :=
1

n

n∑
j=1

e(u+iv)ZjI
{
euZj ≥ Ξn

}
.

By the Markov inequality we get for any p > 1

|E [Rn(u)]| ≤ E
[
euZj

]
P
{
euZj ≥ Ξn

}
≤ Ξ−pn E

[
euZj

]
E
[
eupZj

]
= o
(√

(log n)/n
)

Set ηk = 2k, k = 1, 2, . . ., then it holds for any p > 2

∞∑
k=1

P
{

max
j=1,...,ηk+1

euZj ≥ Ξηk

}
≤

∞∑
k=1

ηk+1 P{euZ ≥ Ξηk} ≤ E[epuZ ]
∞∑
k=1

ηk+1Ξ−pηk <∞.
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By the Borel-Cantelli lemma,

P
{

max
j=1,...,ηk+1

euZj ≥ Ξηk for infinitely many k
}

= 0.

From here it follows that Rn(u)− ERn(u) = o
(√

(log n)/n
)

. This completes the proof.

Lemma 7.2. Let (Lt, t ≥ 0) be a Lévy process with the triplet (µ, σ2, ν). Suppose that∫
{|x|>1} |x|ν(dx) < ∞, and that σ and ν are not both zero. It then holds for ψ(u) =

− log(E(exp(iuLt)))

(i) : |ψ(u)| . u2 and (ii) : |ψ′(u)| . u, u→∞. (46)

Further, if

d = µ+

∫
{|x|>1}

xν(dx) 6= 0 (47)

we have
(i) : |ψ(u)| & u and (ii) : |ψ′(u)| . 1, u ↓ 0. (48)

If d = 0 we have in the case ν({|x| > 1} ∩ dx) ≡ 0,

(i) : |ψ(u)| & u2, and (ii) : |ψ′(u)| . u, u ↓ 0, (49)

and in the case ν({|x| > 1} ∩ dx) 6= 0,

(i) : |ψ(u)| & u, and (ii) : |ψ′(u)| = o(1), u ↓ 0. (50)

Proof. In general we have

ψ(u) = −iuµ+
u2σ2

2
+

∫
R
(1− eiux + iux1|x|≤1)ν(dx), (51)

where ∫
R
(1− eiux + iux1|x|≤1)ν(dx) = u2

∫
{|x|≤1}

1− eiux + iux

(ux)2 x2ν(dx) (52)

+

∫
{|x|>1}

(
1− eiux

)
ν(dx).

Note that

0 < c1 <

∣∣1− eiy + iy
∣∣

y2
< c2 for y ∈ R,

with 0 < c1 < c2, and that∫
{|x|>1}

(
1− eiux

)
xv(dx) −→

∫
{|x|>1}

xv(dx) for u→∞
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by Riemann-Lebesgue. This yields (46)-(i). It is not difficult to show by standard arguments
that due to the integrability condition we have

ψ′(u) = −iµ+ uσ2 − i

∫
R
(eiux − 1|x|≤1)xν(dx).

Next, (46)-(ii) follows by observing that∫
{|x|≤1}

(eiux − 1)xv(dx) = u

∫
{|x|≤1}

eiux − 1

ux
x2ν(dx),

where
(
eiy − 1

)
/y is bounded for y ∈ R. Suppose d 6= 0. By (47), ψ′(0) = −id 6= 0, and

since ψ(0) = 0 we have (48)-(i), and (48)-(ii) is obvious. Next suppose d = 0, i.e. ψ′(0) = 0.
We then have,

ψ(u) = ψ(u)− uψ′(0) = ψ(u) + iud

=
u2σ2

2
+

∫
R
(1− eiux + iux1|x|≤1)ν(dx) + iu

∫
{|x|>1}

xν(dx)

=
u2σ2

2
+

∫
{|x|≤1}

(1− eiux + iux)ν(dx)

+

∫
{|x|>1}

(1− eiux)ν(dx) + iu

∫
{|x|>1}

xν(dx)

and

ψ′(u) = ψ′(u)− ψ′(0)

= uσ2 − i

∫
R
(eiux − 1|x|≤1)xν(dx) + i

∫
{|x|>1}

xν(dx).

If ν({|x| > 1} ∩ dx) ≡ 0 we thus have

ψ(u) =
u2σ2

2
+

∫
{|x|≤1}

(1− eiux + iux)ν(dx)

=
u2σ2

2
+ u2

∫
{|x|≤1}

1− eiux + iux

(ux)2 x2ν(dx)

and we observe that
Re
(
1− eiux + iux

)
= 1− cos(ux) ≥ 0

so in particular Reψ(u) & u2 while |ψ(u)| . u2. Hence (49)-(i) is shown. Then,

ψ′(u) = uσ2 − i

∫
{|x|≤1}

(eiux − 1)xν(dx)

= uσ2 − iu

∫
{|x|≤1}

eiux − 1

ux
x2ν(dx)
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and note again that
(
eiy − 1

)
/y is bounded, hence we have (49)-(ii). Finally, if d = 0 and

ν({|x| > 1} ∩ dx) 6= 0, let us write

ψ(u) =
u2σ2

2
+ u2

∫
{|x|≤1}

1− eiux + iux

(ux)2 x2ν(dx)

+

∫
{|x|>1}

(1− cos(ux))ν(dx) + i

∫
{|x|>1}

(ux− sin(ux)) ν(dx)

where

0 ≤
∫
{|x|>1}

(ux− sin(ux)) ν(dx) ≤ u

∫
{|x|>1}

xν(dx) . u,

but due to dominated convergence also∫
{|x|>1}

(ux− sin(ux)) ν(dx) = u

∫
{|x|>1}

xν(dx) + o(1).

Hence, ∫
{|x|>1}

(ux− sin(ux)) ν(dx) � u, u ↓ 0,

and from this (50)-(i). For the derivative we have,

ψ′(u) = uσ2 − i

∫
R
(eiux − 1|x|≤1)xv(dx) + i

∫
{|x|>1}

xν(dx)

= uσ2 − iu

∫
{|x|≤1}

eiux − 1

ux
x2ν(dx)− i

∫
{|x|>1}

(
eiux − 1

)
xν(dx)

= o(1), u ↓ 0,

by similar arguments, i.e. (50)-(ii).

Lemma 7.3. For any α ≥ −2, there exist positive constants C1 and C2(α) such that uniformly
for |β| ≥ 2,

C|β|α−1/2e−|β|π/2 ≤ |Γ(α + iβ)| ≤ Cα|β|α−1/2e−|β|π/2. (53)

Corollary 7.4. For all 0 < α < 1/2 and all U > 2, it holds∫ U

−U

dβ

|Γ(α + iβ)|
≤ CU1/2−αeUπ/2 (54)

for a constant C > 0. For α > 1/2, we have∫ U

−U

dβ

|Γ(α + iβ)|
≤ C1(α) + C2e

Uπ/2 (55)

where C2 does not depend on α.
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