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Abstract

Given a Lévy process L, we consider the so-called statistical Skorohod embedding
problem of recovering the distribution of an independent random time 1" based on i.i.d.
sample from Lp. Our approach is based on the genuine use of the Mellin and Laplace
transforms. We propose consistent estimators for the density of T', derive their conver-
gence rates and prove their optimality. It turns out that the convergence rates heavily
depend on the decay of the Mellin transform of T. We also consider the application of
our results to the problem of statistical inference for variance-mean mixture models and
for time-changed Lévy processes.

1 Introduction

The so called Skorohod embedding (SE) problem or Skorohod stopping problem was first
stated and solved by Skorohod in 1961. This problem can be formulated as follows.

Problem 1.1 (Skorohod Embedding Problem). For a given probability measure 1. on R, such
that [ |z|du(z) < oo and [ xdu(x) = 0, find a stopping time T' such that By ~ p and Bra,
is a uniformly integrable martingale.

The SE problem has recently drawn much attention in the literature, see e.g. Obtdj, [8], where
the list of references consists of more than 100 items. In fact, there is no unique solution to
the SE problem and there are currently more than 20 different solutions available. This means
that from a statistical point of view, the SE problem is not well posed. In this paper we first
study what we call statistical Skorohod embedding (SSE) problem.

Problem 1.2 (Statistical Skorohod Embedding Problem). Based on i.i.d. sample X1,..., X,
from the distribution of By consistently estimate the distribution of the random time T > 0,
where B and T' are assumed to be independent.

The independence of B and T is needed to ensure the identifiability of the distribution of
T from the distribution of By. It is shown that the SSE problem is closely related to the
multiplicative deconvolution problem. Using the Mellin transform technique, we construct a
consistent estimator for the density of 7" and derive its convergence rates in different norms.
Furthermore, we show that the obtained rates are optimal in minimax sense. Next, we generalize
the SSE problem by replacing the standard Brownian motion with a general Lévy process. The
generalized SSE problem turns out to be much more involved and its solution requires some



new ideas. Using a genuine combination of the Laplace and Mellin transforms, we construct a
consistent estimator, derive its minimax convergence rates and prove that these rates basically
coincide with the rates in the SSE problem.

Some particular cases of generalized statistical Skorohod embedding problem have been already
studied in the literature. For example, the case of the stopped Poisson process was considered
in the recent paper of Comte and Genon-Catalot, [5].

2 Statistical Skorohod embedding problem

Let B be a Brownian motion and let a random variable 7" > 0 be independent of B. We then

have,
X := By ~ VT B, (1)

and the problem of reconstructing 7" is related to a multiplicative deconvolution problem. While
for additive deconvolution problems the Fourier transform plays an important role, here we can
conveniently use the Mellin transform.

Definition 2.1. Let { be a non-negative random variable with a probability density pe, then
the Mellin transform of p is defined via

Mipd(z) == E[&Y] = / " pe(e)r de )
for all z € S¢ with S; = {z € C: E[¢***™!] < o0}

Since p¢ is a density it is integrable and so at least {z € C: Re(z) =1} C S¢. Under mild
assumptions on the growth of p, near the origin one obtains

{zeC:0<as<Re(z) <b}CS;

for some 0 < a¢ < 1 < be. Then the Mellin transform (2) exists and is analytic in the strip
ag < Rez < be. For example, if p¢ is essentially bounded in a right-hand neighborhood of zero,
we may take ag = 0. The role of the Mellin transform in probability theory is mainly related
to the product of independent random variables: in fact it is well-known that the probability
density of the product of two independent random variables is given by the Mellin convolution
of the two corresponding densities. Due to (1), the SSE problem is closely connected to the
Mellin convolution. Suppose that the random time 7" has a density p; and that we may take
0 < ap <1 < byp. Since S, O {2z € C:Re(z) >0}, we derive for max(2ar — 1,0) <
RG(Z) < 2bp — 1,

Mpix|(z) = E[| By |E[TED/2]

o(z-1)/2
= Mlps, | (z)MIpr]((z +1)/2) =

VT

L(z/2)Mlprl((z +1)/2).



As a result

VT Mlpix](22 — 1)
21 T(:—1/2)

Mpr|(z) = max(ar,1/2) < Re(z) < by

and the Mellin inversion formula yields

pr(a) = / T Mipal(y + i) do 3)

7 w ‘X|](2<7+lv)_1)d f 1/2) <~ < b >0
\/—/ Py 40— 1/2) v for max(ap,1/2) <y <bpr, z>0.
Furthermore, the Mellin transform of p x| can be directly estimated from the data X;,..., X,
via the empirical Mellin transform:

M [pix|)( Z|X "', Re(z) >1/2, (4)

where the condition Re(z) > 1/2 guarantees that the variance of the estimator (4) is finite.
Note however that the integral in (3) may fail to exist if we replace M|p|x|| by M, [px|]. We
so need to regularize the inverse Mellin operator. To this end, let us consider a kernel K(-) > 0
supported on [—1, 1] and a sequence of bandwidths h,, > 0 tending to 0 as n — co. Then we
define, in view of (4), for some max(ar,3/4) < v < by,

. T iv Mn[p|x\](2(7 + IU) - 1)
pra(T) \/_/ K (vhy,) P (y — 1/2 + 10) dv. (5)

For our convergence analysis, we will henceforth take the simplest kernel

K(y) = 1-1,1(y),

but note that in principle other kernels may be considered as well. The next theorem states
that pr,, converges to pr at a polynomial rate, provided the Mellin transform of pr decays
exponentially fast.

Theorem 2.2. For any >0, > 0 and L > 0, introduce the class of functions

cn = {1+ [ 1Mo+l an <o,
Assume that pr € C(B,7, L) for some >0 and L > 0, and
max((ar +1)/2,3/4) < v < br. (6)
Then for some constant C., 1, depending on v and L only, it holds

e~ 26/hn | h 7r/h v <1
, )
supE[{x |pT an |} } < C%L X {625/hn + leeﬂ'/hn7 v > 1. (7)

>0
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By next choosing

T+20
h, = logn—2(1—~)loglogn’ V< 17 (8)
(m+28)/logn, ~v2>1,
we arrive at the rate

fw] 2(1+;/§B <1

now og = n, v )
sup \/E[{MPT — pra(2)]} } (9)

x>0 n- 7r+2/3 v > 1

asn — oQ.

With a little bit more effort one can prove the strong uniform convergence of the estimate
Pn,T-

Theorem 2.3. Under conditions of Theorem 2.2 and for v < 1

2(1-9)8
sup sup{x”[pT,n(x) — pr(x ]} Og.s (n w5 log =+25 n)
preC(B,v,L) =0

Let us turn now to some examples.

Example 2.4. Consider the class of gamma densities

a—1 ,—=x
pT(l’, Oé) = & F<OC§ , X >0
for a > 0. Since
_Tz4+a-1)
M[pT]<Z> - F(oz) ) Re(z) > 07

we derive that pr € C(f,, L) forall 0 < 5 < 7/2 and 7y > 0 due to the asymptotic properties
of the Gamma function (see Lemma 7.3 in Appendix). As a result, Theorem 2.2 implies

supE[{:c”!pT — prn( |}}§n7p> n —r 00
x>0

for any p < 1/2, provided v > 1.
Example 2.5. Let us look at the family of densities

gsin(m/q) 1
1+ 29’

pr(r;q) = q>2, x>0.

We have

Mipr](2) = % 0 < Re(2) < q.

Therefore pr € C(B,7, L) forall 0 < § < 7/q and v > 0, and

supE[{:U”!PT — pra( |}}§n7’07 n —r 00
x>0

forany p < 1/(1+ ¢/2), provided v > 1.



Theorem 2.6. Consider the class of functions
DB, L) = {f [T MG+ 1 ol o < L},

and assume that pr € D(5,~, L) for some § > 0 and L > 0 and ~y as in (6). Then for some
constant D., 1, it holds

28 4 Lp20Den/in -y <1
Y n n ) )
ig%)E[{x pr(®) = pra(e |} } S Dy x {hiﬁ + %e”/hn7 v > 1. (10)
By choosing
™
— 11
logn —2(8+1—7)loglogn’ (11)
ifv <1 and
™
= 12
logn — 26 1loglogn (12)
for v > 1, we arrive at
Sup \/E[{WIPT — prn()]} ] <log™” n — 00. (13)

Remark 2.7. Due to the relation
Mlpr](y +iv) = Fle"pr(e)|(v), ar <~y <br,

the conditions pr € C(f,v,L) and pr € D(B,7, L) are closely related to the smoothness
properties of the function e"*pr(e”). For example, if pr € C(8,7, L), then

/_00 | Fle” pr(e)](v)] Pl dy < L

o0

and the function €’ pr(e”) is called supersmooth in this case, see Meister [7] for the discussion
on different smoothness classes in the context of the additive deconvolution problems.

The rates of Theorem 2.2 and Theorem 2.6 summarized in Table 1 are in fact optimal (up to
a logarithmic factor) in minimax sense for the classes C(3,~, L) and D(,, L), respectively.

Theorem 2.8. Fix some 3 > 1. There are ¢ > 0 and x > 0 such that

liminfinf  sup PE;‘(@T(;U) —pa(z)| > enw logfp(n)) > 0,

liminfinf  sup P§;<|pT(x) — pa(x)] > glog_ﬁ(n)> > 0,

N0 Pn pTGD(ﬁ7’Y7L)

for some p > 0, where the infimum is taken over all estimators (i.e. all measurable functions of
Xi,...,Xp) of pr and Pff;‘ is the distribution of the i.i.d. sample X1, ..., X, with X; ~ Wy
and T ~ pr.



C(B,v, L) D(B3,7, L)

v <l1 y=>1

2(1—v)B
n_%w log +;5 (n) n_%ﬂ? log_ﬁ(n)

Table 1: Minimax rates of convergence for the classes C(/3,7, L) and D(3,~, L).

3 Generalised statistical Skorohod embedding problem

In this section we generalize the statistical Skorohod embedding problem to the case of Lévy
processes. In particular, we consider the following problem.

Problem 3.1. Based on i.i.d. sample X;,..., X, from the distribution of u estimate the
distribution of the random time T' > O independent of a Lévy process L such that Ly ~ p.

Note that the situation here is much more difficult than before, since the Lévy processes
do not have, in general, the scaling property (1). Hence the approach based on the Mellin
deconvolution technique can not be applied any longer. Let (L;, t > 0) be a Lévy process with
the triplet (p, 02, ). Define a curve in C

0= {Re(w(u)) +ilm(u(u)), u € R |,

where 1(u) = —t ' log(E(exp(iuL;))). Our approach to reconstruct the distribution of T is
based on the simple identity

Flpx](A) = Elexp(iALr)] = L[pr](¥(A)). (14)

It is well known that the Laplace transform of £[pr](u) is analytic in the domain {Re(u) > 0}.
The following proposition shows that the object M[L[pr]|(2) is well defined and that it can
be related to the Fourier transform of px, which in turn can be estimated from the data.

Proposition 3.2. Let us assume that Re(y)(u)) — oo as u — oo and that

() _
Re((w) ~°~ (15)

for all u > 0 and some A > 0. Moreover, let pr be (essentially) bounded. Then, for 0 <
Re(z) < 1 it holds that

MILlpr)(=) = / 0 Ll (u)du = Jw 2o w)du

¢
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Figure 1: A typical shape of the contour /.

Remark 3.3. The condition (15) is fulfilled if, for example, the diffusion part of L is nonzero
or if ¢ is real and ¥ (u) — oo as u — 0.

Under the assumptions of Proposition 3.2 we may write,
M) = [ WO L) (i

where L[pr|(1(N)) = Flpx](A) due to (14). On other hand, one may straightforwardly derive,

M[Lpr]l(z) = Mpr](1 - 2)I'(z), 0 <Re(z) <1,

MILlpr]](1 —2) _ Jy [¥ Flpx] MY (A)dA

T(1— 2) F(l ) , 0<Re(z) <1. (16)

M(pr](z) =

In principle one can now replace the Fourier transform of px in (16) by its empirical counterpart
based on the data. However, in this case we need to regularize the estimate of M|pr|(2) to
perform the inverse Mellin transform. To this end consider the approximation

M Z/ ZIIXk/\ Z(I) ZXk



and define in view of (16),

1 U @, (1 — v —iv, X) ,
n(T) = — ’ dy,  for 0 < 1 17

k=1
where U,,, A,, — oo in a suitable way as n — oo. Note that in many cases the function ®,, can
be found in closed form. For example, consider the case of subordinated stable Lévy process
with ¢(X) = |A|*. It then holds for Re(z) > 0,

An .
Bu(z) = [ O )
0
An .
— Oé/ )\a(z—l)elx)\)\oz—l d\
0

A7L
— Oé/ )\az—lelx/\d)\
0

az

F(az; 1+ az;id,x),
z

where F7 is Kummer's function. In the next two theorems we prove a remarkable result showing
that the estimate pr,,(z) converges to p(z) at the same rate (up to a logarithmic factor in
the polynomial case) as in the case of the time-changed Brownian motion.

Theorem 3.4. Suppose that 1) satisfies the conditions of Proposition 3.2, and that moreover
f{|x|>1} |z|v(dx) < oo. Furthermore suppose that there is a 1/2 < v < 1 such that pr €
C(B,7,L) (cf. Theorem 2.2) for some 3 > 0, and

| s P an < o (18)
for some ¢ > 0. Then under the choice
A, = nTTE (19)
and € 2y —1
Un:(2_27+€)(2ﬁ+ﬂ>logn—2ﬁ+ﬂloglogn, (20)
we get
sup \/E [#27 |pu(2) — pr(2)P] S n” #5050 0g?F 0, nsoo. (1)

x>0
Thus for v — 1 we recover the rates of Theorem 2.2 up to a logarithmic factor.

Remark 3.5. Since
| s Fed Ol = [ Ol

the condition (18) is, for example, fulfilled for some £ > 0 if Re[t)(\)] =2 A for A — 400 and
pr is continuous in 0 with pr(0) < oo.



In the case pr € D(5,~, L) we get exactly the same logarithmic rate as in Theorem 2.6.

Theorem 3.6. Suppose that ) and ~ are as in Theorem 3.4, and that now pr € D(3,~, L)
(cf. Theorem 2.6) for some 3 > 0. Further suppose that (18) holds. Then under the choice

A, = niGreE (22)

(hence the same as in Theorem 3.4) and
logn — ——————— loglogn, (23)
m

we get

sup \/E [227 |pu(z) - pr(@)*] Slog?(n), n— .
x>0

Discussion The rates in Theorem 3.4 and Theorem 3.6 are optimal in minimax sense, since
they are basically coincides (up to a logarithmic factor) with the rates in Theorem 2.2 and
Theorem 2.6, respectively. As can be seen from the proof of Theorem 2.8 and Remark 3.5, the
lower bonds continue to hold true under the additional assumption (18). Let us also stress that
the class C(f3,, L) is quite large and contains the well known families of distributions such as
Gamma, Beta and Weibull families. It follows from Theorem 3.4 that for all these families our
estimator p,,  converges at a polynomial rate.

4 Applications

4.1 Estimation of the variance-mean mixture models

The variance-mean mixture of the normal distribution is defined as
pla) = [ rotu) 2 exp(—(a = )/ (20%u)) glu)ds
0

where g(u) is a mixing density on R, . The variance-mean mixture models play an important
role in both the theory and the practice of statistics. In particular, such mixtures appear as
limit distributions in asymptotic theory for dependent random variables and they are useful for
modeling data stemming from heavy-tailed and skewed distributions, see, e.g. [1] and [3]. As
can be easily seen, the variance-mean mixture distribution p coincides with the distribution
of the random variable oW + 1", where T is the random variable with density g, which is
independent of W. The class of variance-mean mixture models is rather large. For example,
the class of the normal variance mixture distributions (;z = 0) can be described as follows:
p is the density of a normal variance mixture (equivalently p is the density of W7) if and
only if F[p](1/u) is a completely monotone function in u. The problem of statistical inference



for variance-mean mixture models has been already considered in the literature. For example,
Korsholm, [6] proved the consistency of the non-parametric maximum likelihood estimator
for the parameters ¢ and u, g being treated as an infinite dimensional nuisance parameter.
In Zhang [11] the problem of estimating the mixing density in location (mean) mixtures was
studied. To the best of our knowledge, we here address, for the first time, the problem of
non-parametric inference for the mixing density g in full generality and derive the minimax
convergence rates. In fact, Theorem 3.4 and Theorem 3.6 directly apply not only to normal
variance-mean mixture models, but also to stable variance-mean mixtures.

4.2 Estimation of time-changed Lévy models

Let L = (L;)¢>0 be a one-dimensional Lévy process and let 7 = (7 (s))s>0 be a non-negative,
non-decreasing stochastic process independent of X with 7(0) = 0. A time-changed Lévy
process Y = (Y;),>0 is then defined as Y, = X7 (,). The process T is usually referred to as
time change or subordinator. Consider the problem of statistical inference on the distribution
of the time change 7 based on the low-frequency observations of the time-changed Lévy
process X; = Ly(;. Suppose that n observations of the Lévy process L; at times t; = jA,
Jj=0,...,n, are available. If the sequence 7 (t;) — T (t;_1), j = 1, ..., n, is strictly stationary
with the invariant stationary distribution 7, then for any bounded “test function” f

1 n
n Z f (LT(tj) - LT(tjfl)) - Ew{f(LT(A)ﬂa n — oo, (24)
j=1
The limiting expectation in (24) is then given by

E. [/ (Lya)] = / T E[F(Ly)] 7(ds).

Taking f(z) = fu(z) = exp(iu'z), u € R?, we arrive at the the following representation for
the c.f. of Ly(y:

E [exp (iulr(a))] = /OOO exp(ty(u)) m(dt) = L (¢ (u)), (25)

where ¥(u) := —t"1log(¢(u)) with ¢;(u) = Eexp(iu' L;) being the characteristic exponent
of the Lévy process L and L, is the Laplace transform of 7. Suppose we want to estimate the
invariant measure 7 (or its density) from the discrete time observations of L, then we are in
the setting of the generalized statistical Skorohod embedding with the only difference that the
elements of the sample Lr,) — L7q), -, L7, — L7(t,_,) are not necessarily independent.
However, under appropriate mixing properties of the sequence 7 (t;) — T (t;—1), 7 =1,...,n,
one can easily generalize the results of Section 3 to the case of dependent data (see, e.g. [2]
for similar results). Let us note that the statistical inference for time-changed Lévy processes
based on high-frequency observations of Y has been the subject of many studies, see, e.g.
Bull, [4] and Todorov and Tauchen, [9] and the references therein.
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5 Numerical examples

Barndorff-Nielsen et al. [1] consider a class of variance-mean mixtures of normal distributions
which they call generalized hyperbolic distributions. The univariate and symmetric members
of this family appear as normal scale mixtures whose mixing distribution is the generalized
inverse Gaussian distribution with density

— %v*l exp (—% (%zv + %)) , v>0, (26)

where K is a modified Bessel function. The resulting normal scale mixture has probability
density function

pr(v)

21/2

px(z) = R o K (052)(0% + 2?2 073) Ky (5202 + ) 12).

Let us start with a simple example, Gamma density pr(z) = xexp(—z), x > 0, which is a
special case of (26) for 6 = 0, A = 2 and » = /2. We simulate a sample of size n from
the distribution of X, and construct the estimate (5) with the bandwidth h,, given (up to a
constant not depending on n) by (8) and v = 0.8. In Figure 2 (left), one can see 50 estimated
densities based on 50 independent samples from Wy of size n = 1000, together with pr in
red. Next we estimate the distribution of the loss supxe[O,lO}ﬂpT,n(x) — pr(z)|} based on 100
independent repetitions of the estimation procedure. The corresponding box plots for different
n are shown in Figure 2 (right).

Let us now turn to a more interesting example of variance-mean mixtures. We take X = T+Wr
and choose T to follow a Gamma distribution with the density pr(z) = zexp(—z), z > 0.
The estimate (17) is constructed as follows. First note that ¢/(\) = —iX + A?/2. In order
to numerically compute the function ®,,(1 — z, X}) for z = v + iv with v < 1, we use the
decomposition

—Z@ 2 X) = [T ) - e ) (27)
+m; 'T(1 = 2) + O(m, ~(1=7) exp(— m, A2 /2)),

where ¢,(A) = 1 371" | ¥ is the empirical characteristic function and m,, = £ > X, —
2. This decomposition follows from a Cauchy argument similar as in the proof of Proposition 3.2
and is quite useful to reduce the cost of computing the integral in (27), since the integral on
the r.h.s. of (27) is much easier to compute due to the asymptotic relation ¢, (\) —e ™) =
O(A?), X — 0. Next we take v = 0.7, A,, and h,, as in Theorem 3.4 with ¢ = 0.5 and 3 = 7/2
(see Example 2.4). Figure 3 shows the performance of the estimate defined in (17): on the
left-hand side 20 independent realizations of the estimate pr,, for n = 1000 are shown together
with the true density pr. The box plots of the loss sup,cy 10{|prn(2) — pr(x)|} based on
100 runs of the algorithm are depicted on the right-hand side of Figure 3. By comparing the

11



500 1000 5000 10000

Figure 2: Left: the Gamma density (red) and its 50 estimates (grey) for the sample size
n = 1000. Right: the box plots of the loss sup,cy 10 { [prn(2) — pr(z)|} for different sample
sizes.

right-hand sides of Figure 2 and Figure 3, we observe that the performances of the estimates
(17) and (5) are similar, although the estimate (5) seem to have higher variance. This supports
the claim of Theorem 3.4 about the same convergence rates in statistical Skorohod embedding
and generalized statistical Skorohod embedding problems, given that pr € C(53,~, L).

6 Proofs

6.1 Proof of Theorem 2.2

First let us estimate the bias of pr,. We have

Mpix|](2(y +iv) — 1)
2l (y — 1/2 4 iv)

1 o .
Elpr.(z)] = ﬁ/ x 7K (vhy,) dv
1 [/

= — 2777 Mpr](y + iv) do.
27T _1/hn

Hence
1

pr(z) — Elpra(z)] = G /{| o }M[pT]W + iv)x_v_i”dv

12



500 1000 5000 10000

Figure 3: Left: the Gamma density (red) and its 20 estimates (grey) for the sample size
n = 5000. Right: the box plots of the loss sup,cy 10 {[prn(2) — pr(z)|} for different sample
sizes.

and we then have the estimate,

1 .
sup{a”|E[pr(2)] —pr(2)|} < 5~ / | Mpr](vy + iv)| dv
=0 T J{jo|=1/hn}

6_5/hn
/ e P Mpr](y + iv)| eIVl dv
21 J{o>1/ha)

ey
2m
2
As to the variance, by the simple inequality Var ([ fidt) < (f \/Var[ft]dt> , which holds
for any random function f; with [ E[f?]dt < oo, we get
1 [~ Malpix|(2(y +iv) — 1)
L — Var | = ¢ (uh .
Var[z"pr,(z)] = Var [ﬁ/ww (vhy,) PRD(y — 172 +10) dv

1 /1/hn \/Var (Mn[plx\](Q(V +iv) — 1))
- 2% “1/hn IT(y —1/2+1v)|

<

<L

(28)

dv

IN

_ 2
1/hn \/Var(|X|2(7+w—1))
_ v
/—1/hn IT(y —1/2 +iv)|

L[ e JEEO] )
/ ——dv| . (29)
n T = 1725 10)

IN
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Note that
E [[Wy|*O07Y] :/ E [[W,|*07V] pr(t) dt
0

=E [|[W;[*0] / 20 Vpp(t)dt
0
=: Cy(y) < o0,

due to (6). We obtain from (29) due to Corollary 7.4 (see Appendix) and by taking into
account (6),

Var[prTn(:c)] < C ( )C3h2 (y—=1) TI'/hn _ C ( )hi('yfl)eﬂ/hn.

2nm n

and so (7) follows with C., ;, = max(C5(7), 4#2) Finally, by plugging (8) into (7) we get (9)
and the proof is finished.

6.2 Proof of Theorem 2.6

The proof is analog to the one of Theorem 2.2 , the only difference is the bias estimate (28)
that now becomes

sup{2”|E[pr,(z)] — pr(z)|} < —hﬁ
>0

which gives (10) with a constant D, ;, = max(C3(7), %) again. Next with the choice (11)
we obtain from (10) the logarithmic rate (13).

6.3 Proof of Theorem 2.8

Our construction relies on the following basic result (see [10] for the proof).

Theorem 6.1. Suppose that for some ¢ > 0 and n € N there are two densities po ,,,p1.n € G
such that

d(Pons P1.n) > 260,

If the observations in model . follow the product law P,,, = PS" under the density p € G and

X2(Prn | o) < ntlog(l+ (2 — 46)?)

holds for some § € (0,1/2), then the following lower bound holds for all density estimators p,
based on observations from model n.:

inf sup P® (d(ﬁn,p) > svn) > .
Dn peG

If the above holds for fixed €,6 > 0 and all n € N, then the optimal rate of convergence in a
minimax sense over G is not faster than v,,.
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6.3.1 Proof of a lower bound for the class C(5,~, L)

Let us start with the construction of the densities py, and p;,. Define for any v > 1 and
M > 0 two auxiliary functions

vsin(w/v) 1

= >
and
1 1@ sin(M log(z))
T) = e 2 ————~2 1 >0.

The properties of the functions g and p,,; are collected in the following lemma.

Lemma 6.2. The function q is a probability density on R with the Mellin transform

sin(7/v)
= —=, Relz] >0.
Mld)(z) sin(rz/v)’ el2
The Mellin transform of the function py; is given by
1 . :
Mpu(u + ) = 5 [e(u71+1(v+M))2/2 _ plu—1Hi(w—)?/2] (30)

Hence
| owtarts = Mipul1) =0

Set now for any M > 0

qom(x) = q(x), qu(®):=q@)+(qVpm)(z),

where fV g stands for the multiplicative convolution of two functions f and g on R, defined
as

(fVg(x):= /Ooowdt, x > 0.

The following lemma describes some properties of go a7 and g; ar.

Lemma 6.3. For any M > 0 the function q, s is a probability density satisfying

HQO,M - Q1,M||oo = SIEP |610,M(I) - Q1,M(I)| Z eXP(—MW/V), M — oo.
jAS]

Moreover, qo nr and ¢ ar are in C(8,7, L) for all 0 < B < w/v and v > 0 with L depending
on 7.

15



Proof. First note that
/0 " gun(e)de = 1+ / gV pan)(@) = 1+ Mg (DMpar(1) = 1.

Furthermore, due to the Parseval identity

1@ sin(M log(z)) 1
Var @ Tt (/)
<1 e’

— b/¥o\/§;e Ii;;:;@jasdv
<1

o V2

e logly) oo 1 2
2m \/ﬁe

e~ 1o8(v) /°° iulog(y) [H(u + M) — H(u— M)

dx

(qVpm)ly) = /OOO

=% sin(Mw)

— ¢ log(y) el

v2
e 7 sin(Mv) dv

1 4 ev(log(y)—v)

2 (log(y)—v)
2 ¢ dv

sin(Mv)y T erllog(y)—)

8

e
2 2

—00

| iRl

where R(z) = 15 and H(x) = ¢=*"/2. Note that

oo ztiuz 1 oo _v/v+iuv/v 1 1 : 1 :
FIR(u) = ¢ dx:—/ = -r(M)p (-1,
oo L+ e v) o 1+ev v v v

Hence due to (53)

sup |qov(y) — ()| = sup [(qV pu) ()| 2 exp(=Mn/v), M — oc.
yER+ yER+

The second statement of the lemma follows from Lemma 6.2 and the fact that M|q V py| =
Mg M{pa]. O

Let Ty s and T3 s be two random variables with densities gy ps and ¢ s, respectively. Then
the density of the r.v. [Wr, [, i = 0,1, is given by

2 o 22
piv(x) i= E/O A V275 g (N dX i =0, 1.
For the Mellin transform of p; s we get

Mpinl(z) = E[Wi Y E[TS ]
— E[[W " Mg (2 +1)/2)
2z/2

V2r

[(z/2)Mlgiml((2+1)/2), i=0,1. (31)

16



Lemma 6.4. The y>-distance between the densities po,m and py ar fulfills

_ 2
X2(p1,M|p0,M) = / (PLae(@) = Pou(@)) dr < e~ Mr(42/v) Ay 0.
po,m ()

Proof. First note that py ps(z) > 0 on [0, 00). Since

2 wvsin(n/v) /OO g 22 1
r) = A €™ ——
po,M( ) o p ; TS
2 wsin(w/v) /oo 19 g2 1
N Y T T
9 : 0y w-1/2-1
_ VSIH(T('/V)/ i dy
V2 ™ 0 (1+y”)
= 2 VSin(?T/V)F(V —1/2)z7*" 2 — o0
/27-(_ T ) )

—2v+1

we have pg y(z) 2 @ , © — 00. Furthermore, due to (31) and the Parseval identity

| e arte) = sl do =
0

—4+4-2v y+ioco o 1 QU —
& Aﬂqvmd(z+1)F<z>ﬂﬂqva(2y °F >F( - Z>dz

T S 2 2 2 2
(32)
where M(q V pr](2) = Mlq](2)M[prm](z). Due to (30)
Mipatl(u + )| < 222 20+ M) +o(v = M) (33)

2
with ¢(v) = e Combining (53) (Appendix), (32) and (33), we derive
/ (pra(z) — po,M(x))de

po,M(SE‘)

XQ(pl,M|p0,M)

N

/0 " (prnt(@) — por(2))?da + / " (pue(z) — po ()P

AN

/ ol e IR Y (g0 /2 4 M) + B(0/2 — M) do

[e.o]

< My_le_MTr(1+2/V), M — 0o.

Fix some x € (0,1/2). Due to Lemma 6.4, the inequality
nx*(p1ulponr) < K

17



holds for M large enough, provided

_ 1+e
(1 +2/v)

for arbitrary small € > 0. Hence Lemma 6.3 and Theorem 6.1 imply

(log(n) + (v — 1) loglog(n))

inf  sup Ppn(Hpn pllec > CU”) > 0.
Pn pec(B,v,L)

n—p
forany 8 < /v < m,anyy > 0, some constants ¢ > 0, J > 0 and v,, = n=/("28) Jog™7+25 (n).

6.3.2 Proof of a lower bound for the class D(j3,~, L)

Define for any v > 1, a > 0 and M > 0,

log" '(1/z), 0<az<1,
v 2log" Hx), z>1

q(z) = [2F (V)] x {

and
1 @ sin(M log(x))
pue) = e rlog(z)

The properties of the functions ¢ and p,; can be found in the next lemma.

x> 0.

Lemma 6.5. The function q is a probability density on R with the Mellin transform
Mlgl(z) == [+ (2—2)""], 0<Rez] <2

The Mellin transform of the function py; is given by

@G(u,v%—M)—G(u,v—M)

Mpul(u+iv) = e 5 : (34)
where G(u,v) = [*_ e~ He ) g Hence
oo M 2
Cop = / par(@)dz = Mpu](1) = / e d.
0 -M

Set now for any M > 0

qom(x) = q(z), qum(z) =1 - Cu)glz)+ (qV pu)(z),

where fV g stands for the multiplicative convolution of two functions f and g on R, defined

via o / 0 x/t

18



Lemma 6.6. For any M > 0, the function g, 5s is a probability density satisfying

sup  |qom () — qrm(x)| < |cos(7r1//2)|M_”+1, M — o,
z€(1-6,14+9)

where § > 0 is a fixed number. Moreover, gy and gy s are in D(f3,7y, L) forall f < v —1
and v € (0,2).

Proof. First note that

/qul,mx)dx: 1+/0°°<qva><x> G =1+ Mpar(1) x Mg)(1) — Cor = 1.

Furthermore, (¢ \V par)(y) = 2T ()] " [Ii(y) + Lo(y)] with

2@ _,sin(M log(x)) 1
Li(y) = / e o= log" T (¢ /y)da
y log()

> Z2 i M
= / e_%_z—sm( 2) (z —log(y))" 'dz
) z

and

Y e’ _,sin(M log(x .
B = [ ey oy
0

log(z)
log(y) - sin(M z
= [ e ogly) -

By taking y = exp(A), we get for I;(y)

Li(y) = / sz A)) oy,
0

z4+ A
= COS(AM)/ ¢
0

SN2 (g
e
+sin(AM) /
0

A sin(Mz)z""'dz

2
,%,(ZJFA)
cos(Mz)z""tdz.

z+ A
The well known Erdélyi lemma implies
0o - CEDE (210 L
/0 Z_}_—Asin(Mz)z”_ldz < ['(v)sin(rv/2)M™", M — oo

and

00 ,M,(Z+A) _A%2_y

e 2 € 2a

/ TCOS(MZ)ZV_le = I'(v)cos(mv/2)M™, M — oc.
0 z

19



Hence

_%j_A
L) = & “—T(v) sin(AM + 7v/2)M ™", M - . (35)

Analogously

A 2 :
IQ(@A) — €2A/ 67E+ZSIH(MZ) (A . z)”*ldz

oo z
_ 62A/ 6—%%4% sin(M (A — Z))Zl’*ldz
0 A—z
o0 . 2 M
= e 24sin(AM) / 6_%“‘%—%8( 2) 2tz
—e 2 cos(AM) /OO e_(A;;*)Q +A—2sz—1dz
0 A —Z
e‘éﬁ_A
= i [(v)sin(AM — v /2) M~

Combining the previous estimates, we arrive at
_A2_y
A

It remains to note that the maximum of r.h.s of (35) is attained for A € {7/2M, 37 /2M}
and

L(e®) + I (e?) = 25 T'(v) sin(AM) cos(rv/2) M.

sgp[fg(eA) + I (eM] < T(v)| cos(mv/2)| M.

The property g1 € D(B,7,L) for all B < v —1 and v € (0,2) with L depending on 7,
follows from the identity M{[q1 a/](2) = Mq](2)(1 = Cur) + Mpum](2)M]q](2) and (34). O

Let T0.ar and T} s be two random variables with densities gy as and gi s respectively. The the
density of the r.v. |Wr, , |, i = 0,1, is given by

pzM( . \/2_/ 1/26 2Aq M()\)d)\, Z:O,l
T
For the Mellin transform of p; 5/, we have

Mpin(z) = E[Wi Y E[T5, 0]
= E[[W1|* | Mg (2 +1)/2)

- jz_;wz/z)M[qi,MJ(@ L1)/2). (36)
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Lemma 6.7. The y>-distance between the densities po,m and py a satisfies

_ 2
XQ(Pl,M\po,M) = / (P11 (%) ~ P () de <e ™M™ M — .
po,um ()

Proof. First note that pg as(z) > 0 on [0, 00). Since

1 2 1 22
/ A2 3 log" N (1/A)dN = / A7H2e 3 log” "t (1/A)dA
0 0

Jy=1/]A\\A=1/y/ = / y =322 100" (y)dy
1

= [ @ty e g gy

2
o0

=z / Yy~ eV gy /a?)dy S e

and

o 192
/ A2 55 Jog" H(N)dN = /
1 0
I'(

we have po s (z) 2 271,  — oo. Furthermore, due to (36) and the Parseval identity

|2 arte) = sl do =
0
9—4ta  pyico z+1 z a—z+1 a—z
™ g (552) (3 v () (52) .

where M(q V pr](2) = Mlq](2)M[prm](z). Due to (34)

™

@@(ijM)—i-@(v—M)

(Mlpu](u+iv)| < e 5

(38)

22
with ®(v) = [°_ e~z dz. Combining (37) with properly chosen v > 0, (38) and Lemma 7.3
(see Appendix), we derive

/(pl(x) — po(x))
. po(z)
< / e (D02 4+ M)+ D(v/2 — M) dv <e™™M™2 M - .

Clolpo) = dr < / (01 (@) — pole))de + / " (@) - po(a))da
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Fix some x € (0,1/2). Due to Lemma 6.7, the inequality
an(Pl,M\po,M) <K

holds for M large enough, provided

M= 2(1+¢)
T

log(n)

for arbitrary small € > 0. Hence Lemma 6.6 and Theorem 6.1 imply

inf  sup Py ([pn — plloe > cvn) > 0.
Pn pGD(ﬁ,’y,L)

for any < v — 1, any v € (0,2), some constants ¢ > 0, § > 0 and v,, = log " (n).

6.4 Proof of Proposition 2.3

It holds

1 1/hn — 7ivK(Uhn)
prate) ~Elpra(o) = 72 [ ")

y {Malpx] 20y +iv) = 1) = Mpix))(2(y + 1) — 1)} i

C((y +iv) —1/2)

Due to Proposition 7.1

1/hn A1 log(e + |v|)

d
\/_m 2T ((y+i0) —1/2)

sup{ 2" |E[pr,n(z)] — pr(z)|
x>0

with A, = O..(1).

6.5 Proof of Proposition 3.2

Let Opmax be such that A = tan O,y At the arc Kp: w = Re?, —Oma < 0 < Oy, it holds
that

/ wz_lﬁ[pT](w)dw‘ S Remax * RRBZ_I/e_wRCOSGmaxpT(x)d'r
K
: RRez—l

— 0,
COS O ax

< BemaxRRez/ €_IRCOSHmaXd£E — Bemax

for 0 < Rez < 1, where sup,.pr(z) < B.
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6.6 Proof of Proposition 3.4

By (16) we derive for the bias of pr,(z), x > 0,

1 /Un E[®,(1—7v—iv, X;)]

[Elprn(2)] = pr(z)] =

 dv —/ M(pr)(y + iv)z™ 7 dv

27T ['(1—~—iv)
Ve [ OO Flod W) | e |
=S \ar o F(l p—— T dv| + 7/{»&1} |IMpr](y +iv)| dv
=: (%)1 + (%)2

Similar to the proof of Theorem 2.2 we have,

I —BU / . v x| 7L
*)g < ——e 77" Mlpr|(y +iv eﬂlv‘dvge B n—_
(¥)2 = =~ {|U|>Un}| [pr]( )] o
and by Lemma 7.2 and (53)
() < i Flpx](VIdA
Yo L T =y — i)
N\ Ul 1/2 Unr /2
< |77 —1/2Unm/2 - < yUn €77
Sl e [ Pl ()] S e

As for the variance

1 Ul (1 —y—iv, X1)
Var(pr,(z)) = —(27r>2n\/ar [/Un T =7 —iv) x dv]

1 Un Var[@n(1 — 7 — 10, X1)] . |
< ||~ . ———dv| , (39)
(27)%n _u, IT(1 —~ —iv)|
where
\/Var[®, —iv, X;)] < / \/Var |77 XA (X)]dA

- / O W )] /Vare B ax.
0

Due to Lemma 7.2 we have

An 2(1—7)
/ W) &/ (V)] /VareFdA < / A=y < 6
1 -7

and in any case of Lemma 7.2 it holds

1
/0 B [ ()] /Varl XA < / O [ ()
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for some natural constant Cy, C; > 0. Hence from (39) we get by (53),

2(1—)
|:1:\2“’Var(an(x)) < 1 C(]V’UQeU”’T/2£ =: (%)3
’ ~ (27)%n " 11—~ ’

and by gathering ()1, ()2, and (%)3,

2 ¢ 1/2 Unm/2 42(1—7) 12U /2 AU,
E [22|p, _ <7y n/2 A2(1— -n = —BUn
\/ [« Ipa(@) p(m)”’\’Zﬂ'(l—y)\/ﬁ no © noo Az e

Next, the choices (19) and (20) lead to the desired result.

7 Appendix

Proposition 7.1. Let Z;, j = 1,...,n, be a sequence of independent identically distributed
random variables. Fix some u > 0 and define

1 n
n(V) = — g ) Z;}, R.
©n(v) n 2 exp{(u+1iv)Z;}, wve

Furthermore let w be a positive monotone decreasing Lipschitz function on R, such that

1
0<w(z) <

~ Vlog(e + [z[)

Suppose that E[e”“z} < oo and E[|Z|p] < oo for some p > 2. Then with probability 1

logn
lon — SOHLOO(R,w) =0 < ) : (41)

n

Proof. Fix a sequence =, — oo as n — oo. Denote

W) = wf;}) Z(e(wiv)zj]l {5 < Z,) — E [et+)2] {eu? < E"}D’
=1

WZ(U) - w,’(:) Z(e(u+iv)Zj]I {equ > En} _E [e(u+iv)ZI[ {euZ > En}})’

Jj=1

where Z is a random variable with the same distribution as Z;. The main idea of the proof is
to show that

Wi)l = o( 1"5”), (42)

W2(w)| = 0( k’g”) (43)

n
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under a proper choice of the sequence =,,.
Step 1. The aim of the first step is to show (42). Consider the sequence A, = e*, k € N and
cover each interval [— Ay, Ax] by My, = (|2Ak/v] + 1) disjoint small intervals Ay 1, ..., Ak,

of the length v. Let vy 1, ..., vk, be the centers of these intervals. We have for any natural
K>0
1 1 1
max su W (v)| < max max sup |[W:(v)—W. (v
Jms s IS e max sup VL) < Wh(ok)
+ max max IWh (Uk.m)]-

k=1..K { 1<m<My:
[Vk,m|>Ak_1

Hence for any positive A,

=LK Ay <ol <A [v1—va|<y

P (kmax sup (W)l > )\> <P ( sup  [(Wih(vi) — Wh(vy)| > )\/2)

K
+ Z Z P(IW:(vrm)| > A/2). (44)
k=1 1<m<Mj,:
‘vk,m|>Ak,1
We proceed with the first summand in (44). It holds for any vy, v, € R

(v1) = Wh(vy)| < 2Z, Jw(vy) — w(vy)| + %Z Ue(mrim)zj _ e(u+11)2)Zj| I{e"% < En}i|

j=1
—|—‘E [(e(u—i-ivl)Z _ e(u+iv2)Z) I {euZ < E”}H

W,

n

, (45)

< vy —we] E,

1 n
2L, +— Z;| +E|Z
M;' il +ElZ|

where L, is the Lipschitz constant of w and Z is a random variable distributed as Z;. Next,
the Markov inequality implies

1 n
pl= [Z-—EZ] < Pp PR
{231 -] cf < o

=1

n P

> |11 - ElZ]

=1

for any ¢ > 0. Note that

n p

> |11 - ElZ]

j=1

E

p/2
< pntT,

for some constant ¢, depending on p and we obtain from (45)

P{ sup  [W(v1) — W(ve)| > 29En(Le, + E|Z| + c)} < Gy,

[v1—v2| <y
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Hence if 7=, > 1 and A > 4(L,, + E|Z]| + ¢) we get Now we turn to the second term on the
right-hand side of (44). Applying the Bernstein inequality, we get

P{ sup  Wh(vy) — Wh(uy)] > )\/2} < O, PP,

|v1 —v2|<y

1 A2
P (IRe Wy (vkm)] | > A/4) < exp (_ 32(Epw(Ap-1)N/3 + w?(Ag-1) E[ew])) .
Similarly,
1 A2n
P (lIm Vo (vem)] | > A/4) < exp <_32(Enw(Ak1)A/3 + w?(Ay1) E[WD) |
Therefore

ST P(Whkm)| > A2) < (1241/3] + 1) exp <_32(Enw(Ak_1)/\/3>\+nw2(Ak—l)E[GQUZ])> |

{lvk,m[>Ak-1}

Set now v = /(logn)/n, A = (+/(logn)/n and =, = y/n/log(n), then

. [n B Nn
Z P(|Wn(vk,m)| > )\/2) S A IOg(n) CXp ( 32(Enw(Ak_1))\/3 + w2(Ak—1) E[@Quz]))

{lvi,m|>Ar—1}
¢*log(n)
32(1 + E[eQUZ])] > '

n

<
~ \ log(n)

exp (—k:—i—k: [1 —

Assuming that ¢? > 320(1 + E[e*“Z]) for some 0 > 1, we arrive at

- 1/2-6
Y Y PWaltm) > A2) S eF——, n— oo

k=2 {|vgm|>Ak_1} log(n)

Step 2. Now we turn to (43). Consider the sequence
1 &
R,(v) = — Z AT v > =, )
n o
By the Markov inequality we get for any p > 1
IE[R,(u)]| <E[e"%]|P{e"% > E,} <E,? E[e"%] E [e"?%] = o( (logn)/n)

Set n, = 2%,k =1,2,..., then it holds for any p > 2

oo o0 oo
ZP{ max "% > E’nk} <Y e P{e” 2 B, <E[]) 5P < o
P =1 =1 "
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By the Borel-Cantelli lemma,

P{ max e"% > =, for infinitely many k:} =0.
]:1 7777 Nk+1

From here it follows that R,(u) — ER,(u) = 0( (log n)/n) This completes the proof. [

Lemma 7.2. Let (L;, t > 0) be a Lévy process with the triplet (uu,0% v). Suppose that
f{|m|>1} |z|v(dz) < oo, and that o and v are not both zero. It then holds for (u) =

— log(E(exp(iuly)))
() W@l Se and (i) W] Su, u— oo

Further, if
d:u—l—/ av(dz) # 0
{lz[>1}

we have
G): W@l Zu and () @ S1 ulo.
If d =0 we have in the case v({|z| > 1} Ndx) = 0,

(@) (|2’ and (i) [¢'(u)] Su, wl0,
and in the case v({|z| > 1} Ndx) # 0,
(@) : W) Zu, and (ii): [¢'(u)] =o(1), ulO.

Proof. In general we have

u?o? :
R
where
) 1 — iux :
/(1 — " +iurly < )v(de) = uz/ e——glex%(dx)
R flal<ty  (ux)
+ / (1—€e") v(dz).
{lz[>1}
Note that _
1—eY+i
O<cl<—y}<02 for y € R,

Y2
with 0 < ¢; < ¢, and that

/ (1—€e™) zv(dz) — / zv(dx) for u — oo
{la|>1} {l[>1}
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by Riemann-Lebesgue. This yields (46)-(¢). It is not difficult to show by standard arguments
that due to the integrability condition we have

V' (u) = —ip + uo® — i/(eim — 1jgj<1) v (de).
R

Next, (46)-(ii) follows by observing that

i iuxr _ 1
/ (e — 1)xv(dr) = u/ ‘ 2?v(dx),
{lz1<1} {lzj<1y U
where (e — 1) /y is bounded for y € R. Suppose d # 0. By (47), ¥/(0) = —id # 0, and
since ¥(0) = 0 we have (48)-(i), and (48)-(ii) is obvious. Next suppose d = 0, i.e. ¢'(0) = 0.
We then have,

P(u) = (u) — u'(0) = P(u) + iud
u?o? :
= + 1 _ plux + : 1 ol< d + . d
5 /R( e iuxly<1)v(de) 1u/{|w>1} zv(dz)
2 2
— u; + /{|x|§1}(1 — " 4 jux)v(dr)

—l—/ (1 — " v(dz) + iu/ zv(dz)
{lz[>1} {lz|>1}

and
U (u) = ' (u) = ¢'(0)
= uo? — i/R(ei“x — 1<) v (de) + i/ zv(dx).

{lz|>1}

If v({|z| > 1} Ndz) = 0 we thus have

u?c? ,
(u) = 5 —|-/ (1 — €™ +iux)v(dx)
{lzl<1}
2 2 1 — iux :
=27 4 u2/ - T jmxﬁy(dx)
2 fei<y ()

and we observe that _
Re (1 — €"* +iuz) = 1 — cos(uz) > 0

so in particular Re v (u) 2 u? while |¢(u)| < u?. Hence (49)-(4) is shown. Then,

V' (u) = uo? — i/ (e"* — 1)zv(dz)

{le|<1}

iur __ 1
= uo? — iu/ ¢ 2?v(dx)
{lzj<1y YT
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and note again that (¢ — 1) /y is bounded, hence we have (49)-(ii). Finally, if d = 0 and
v({|z] > 1} Ndx) # 0, let us write

u?c? 9 / 1 — e +iur
u) = +u ———z“v(dx
vl =" fai<ty  (uz)? )

— cos(ux))v(dx) +1 ux — sin(ux)) v(dx
+/{|z>1}<1 () v(da) + /{M( (uz)) v(da)

where
0< / (ux — sin(ux)) v(dzr) < u/ zv(dr) < u,
{lz|>1}

{l=>1}

but due to dominated convergence also

ux — sin(uz)) v(dx) = u zv(dzx) + o(1).
/{x.>l}< (ur)) vlde) = [ (o) + o)

{la>1}

Hence,
/ (ux — sin(ux)) v(dr) < u, wul0,
{lz|>1}

and from this (50)-(¢). For the derivative we have,

W (1) = uo? — i é (€ — 1<y )zv(dz) + i / wv(dz)

{lz>1}
) ) eiux -1 ) ) .
=uo” — 1u/ x v(dx) — 1/ (" —1) zv(dx)
{lej<1y UL {la[>1}
=o(l), wl0,
by similar arguments, i.e. (50)-(ii). O

Lemma 7.3. Forany o > —2, there exist positive constants C and Cy(«) such that uniformly
for |5] > 2,

C|B|*~12e 2 < |D(a +18)| < ColBl*H2e T2, (53)

Corollary 7.4. For all 0 < o < 1/2 and all U > 2, it holds

/U d/ﬁ < CUI/Q—anﬂ'/Q (54)
v |T(a+iB)| —

for a constant C' > 0. For o > 1/2, we have

/U _¥ . () + CheV™/? (55)
v Ta+ip)] = ’

where C5 does not depend on .
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