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Large thermoelectric power factor from crystal
symmetry-protected non-bonding orbital in half-
Heuslers
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Modern society relies on high charge mobility for efficient energy production and fast

information technologies. The power factor of a material—the combination of electrical

conductivity and Seebeck coefficient—measures its ability to extract electrical power from

temperature differences. Recent advancements in thermoelectric materials have achieved

enhanced Seebeck coefficient by manipulating the electronic band structure. However, this

approach generally applies at relatively low conductivities, preventing the realization of

exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown

to break through that barrier in a way that could not be explained. Here, we show that

symmetry-protected orbital interactions can steer electron–acoustic phonon interactions

towards high mobility. This high-mobility regime enables large power factors in half-Heuslers,

well above the maximum measured values. We anticipate that our understanding will spark

new routes to search for better thermoelectric materials, and to discover high electron

mobility semiconductors for electronic and photonic applications.
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In the last decades there have been growing efforts to access
high electron mobility materials, which are essential for
diverse applications ranging from solar cells to transistors.

Conventional wisdom targets small effective masses (e.g., InSb1)
to achieve high mobility. The recent discovery of graphene2 and
its three-dimensional analogs, topological Dirac semimetals3–5,
established that record-high mobility can also emerge from
topologically protected Dirac bands with linear energy-
momentum relations. This high mobility is a consequence of
large electron velocities, a signature that reflects the electronic
band structure. Another often-neglected degree of freedom that
governs the intrinsic limit of electron mobility above cryogenic
temperatures is the exploration of scattering probabilities—spe-
cifically, the electron–phonon interaction (EPI)6. Despite having
fundamental understanding of how EPI regulates super-
conductivity7 and polaron formation in conductive polymers8,
tuning its strength for high charge mobility is still uncharted
territory.

Recently, electron transport mechanisms have also attracted
growing interest in the context of thermoelectric materials9.
Thermoelectric devices directly convert heat into electricity10.
Their efficiency, as characterized by the material’s figure of merit
zT ¼ σS2T

κ , is largely limited due to the competing nature of the
transport properties involved9: σ, the electrical conductivity, S, the
Seebeck coefficient, and k, the thermal conductivity. Significant
progress in reaching higher values of zT has been achieved by
greatly reducing k11–13. Improving the power factor (σS2), how-
ever, has been a much more challenging task. One hitherto
widely-adopted strategy is the “band engineering” approach14–16,
wherein the electronic band is tuned by composition or tem-
perature to facilitate a large (or sharply changing) density-of-
states, which favors enhanced Seebeck coefficients. The Seebeck
coefficients can also be raised through exploitation of complex
band structures17 or by crossover between carrier transport
regimes18. Despite the past progress, reaching large power factors
has remained demanding because a high electrical conductivity
must be accompanied by a large Seebeck coefficient, yet these two
properties are often in competition (e.g., a small effective mass
favors high σ, but opposes a large S). On the other hand, the EPI
is a sort of control knob for electron mobility, and tuning it has
only a weak influence on the Seebeck coefficient. The EPI is,
therefore, the ideal choice for resolving the conundrum of high
conductivity and large Seebeck coefficient. Even so, identifying
materials with specific EPI has proven to be a difficult task due to
lack of understanding of the connection between EPI and crystal
structures.

In this work, we uncover the intimate link between EPI and
orbital interactions facilitated via crystal symmetry, by investi-
gating electron transport in half-Heusler systems in unprece-
dented detail. Half-Heusler materials—systems bearing a cubic
crystal structure with three atoms per unit cell19—are well-known
for their high-power factors (including the highest value ever
reported in bulk semiconductor systems above room tempera-
ture20), but the origin of these power factors has been unclear so
far. We study fifteen stable half-Heusler compounds based on
past work21. By using first principles computational tools
(Methods) we reveal that the high-power factors of half-Heusler
compounds originate from a strong suppression of
electron–acoustic phonon couplings, which contradicts the
common belief that the electron transport in such materials is
limited by acoustic phonon scattering19. Through orbital analysis
we determine that this weak acoustic phonon scattering is
enabled by the non-bonding orbitals—electron states mostly
resembling single atomic orbitals with vanishing bonding (anti-
bonding) character—at the band edge. While past simulations
mostly rely on a constant relaxation time approximation22, we

employ the Wannier interpolation scheme for EPI23, which
enables the study of electron transport mechanisms without ad
hoc parameters (Methods). A key insight we provide is that the
vanishing bonding (or anti-bonding) character can be protected
by the crystal symmetry.

Results
Electron–phonon interaction. EPIs are often written in the form
of coupling matrix: hψkj∂qV jψkþqi, representing the transition
probability between electron states mediated by one phonon23.
Figure 1a, b shows calculated EPI matrices associated with
(longitudinal) acoustic and optical phonons for exemplary
materials in their conduction bands. For small phonon wave
vectors, the EPI’s are well approximated by straight lines, with the
slope being defined as the deformation potential (see Methods for
details), which characterizes the electron–phonon coupling
strength. The polar interactions are excluded for now because
thermoelectric materials are often so heavily doped that any polar
effect will be strongly screened by the free carriers (Supplemen-
tary Note 2 and Supplementary Fig. 15).

Deformation potential and effective mass are the two key
parameters that affect the electron mobility. In practice, given the
effective mass, one can extract the deformation potential from
experimentally measured mobility, if other scattering mechanisms
can be excluded24. For half-Heusler materials, a low effective
deformation potential has been obtained based on experi-
ments19,25. As polar optical phonon scattering is strongly
screened at high carrier concentrations, past work has attributed
the intrinsic origin of such a low deformation potential value to
acoustic phonons19,20,25, assuming acoustic-phonon-limited
mobility. However, as seen in Fig. 1c, d, acoustic deformation
potentials (~1 eV) for conduction band edge states in half-
Heuslers are much smaller than the optical ones (~4 eV),
suggesting that the electron–acoustic phonon coupling in half-
Heuslers is in fact very weak—much weaker than had been
assumed. We have also computed the deformation potentials for
valence band edge states as shown in Supplementary Fig. 1. The
results again indicate that acoustic phonon deformation poten-
tials in general are much lower than optical phonon ones.
Accordingly, the experimentally extracted deformation potential
also involves optical phonons, in contrast to the traditional view
that it is the acoustic phonons that limit the electron transport in
half-Heuslers.

Crystal orbital analysis. The surprisingly weak electron–acoustic
phonon coupling stimulates us to query the reason behind. As
originally discussed by Bardeen and Shockley26, the acoustic
deformation potential, derived from electron–phonon couplings,
can be linked to the electron energy level change as the lattice is
strained. In light of this picture, one can explore the
electron–acoustic phonon couplings from a standpoint of orbital
interactions that create such energy levels. At equilibrium lattice
spacing, atomic orbitals from different atomic sites interact and
form bonding and anti-bonding states. As we expand the lattice,
due to the weakened coupling between atoms, the bonding state
will increase its energy while the anti-bonding state lower the
energy, which translates to positive deformation potential for the
former and negative values for the latter. A significant bonding
(or anti-bonding) characteristic at the band edge normally
implies a large acoustic deformation potential, as often found in
many good thermoelectric materials20.

Half-Heuslers (denoted ABC, like in ZrNiSn), however, reveal
a pronounced distinction. Here, we employ the point group
symmetry (at the band edge) to categorize the orbitals according
to their group representations (Fig. 2e, Methods) based on a tight-
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binding formalism. In a tight-binding model (equivalently
known as linear combination of atomic orbitals, or LCAO), one
first defines crystal orbital as a superposition of atomic orbital
states (Methods, Eq. 3). The electron energy levels are then
solved by turning on the interactions between such crystal
orbitals. Owing to the different orbital types and spatial
arrangement of atoms, the orbital interaction energies can vary
from positive to negative, making an intuitive visualization of the
final energy levels difficult. The power of symmetry analysis based
on the group theory is its ability to categorize these crystal orbitals
into different classes based on their transformations under
symmetry group operations, which are known as symmetry
representations. Orbitals belonging to different representations do
not interact with each other, thereby greatly simplifying the
analysis. We emphasize that such symmetry analysis does not
depend on the details of the orbital interactions, and therefore is
also not limited to any particular orbital type. The energy levels
resulting from interactions considering different groups of
representations can be illustrated using an orbital diagram, as
shown in Fig. 2e–f.

Remarkably, for half-Heuslers, one finds the conduction band
edge state (X-point) is characterized by a distinct non-bonding
representation B1 (e.g., in NbFeSb, as shown in Fig. 2a),
corresponding to dx2-y2 crystal orbital at site A (Fig. 2e). Based
on the picture we have discussed, such crystal symmetry-
protected non-bonding orbitals should in principle have zero
deformation potential. Another example of non-bonding orbital
is given by the valence band edge state (L-point) in NbFeSb
(Fig. 2f). While this state (representation E) no longer derives
from a single atomic orbital, its projected density-of-states
indicates that it consists of majorly d orbitals from site B
(Fig. 2b). Based on this, we call this a nearly non-bonding orbital,
because if it had interacted with nearby atomic orbitals with lower
(higher) energies (for example p orbitals from site C), it would
have acquired an appreciable amount of projection on that
orbital with significant anti-bonding (bonding) character. The
predominant projection on B’s d orbitals implies that this state
closely resembles a non-bonding state, and, therefore, is expected
to also have small deformation potential. In this case, the nearly
non-bonding characteristic is partly protected by the crystal
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Fig. 1 Electron–phonon interaction and deformation potential. a, b Electron–phonon coupling matrix along high-symmetry lines. The coupling matrices are
calculated along two different directions in the Brillouin zone for a longitudinal acoustic phonons and b optical phonons, respectively, with the initial
electron state located at the conduction band edge (kX ¼ ð0;0; 2π=aÞ, where α is the lattice constant) and the final electron in the same band (intra-band
coupling). The insets in a and b illustrate the lattice distortions corresponding to acoustic and optical phonons. c, d Averaged deformation potential for
acoustic and optical phonons. The deformation potentials are extracted as the slopes from a, b, for the two different directions (one is parallel with kX while
the other is perpendicular), defined as Ξk and Ξ?. The deformation potential generally depends on the directional angle of the phonon state, but for
simplicity we calculate averaged deformation potential defined as Ξ ¼ Ξ1=3

k Ξ2=3
?

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03866-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1721 | DOI: 10.1038/s41467-018-03866-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


symmetry—orbitals with representations A1 do not interact with
the valence band edge state of NbFeSb.

Similar analysis holds for other half-Heusler compositions. For
example, in ZrNiSn, the valence band edge state (at Г point)
characterized by T2 representation represents a nearly non-
bonding orbital (Supplementary Fig. 2), which is also confirmed
by its predominant projection on Zr’s d orbitals (Fig. 2d). On the
other hand, ZrNiSn’s conduction band edge state corresponds to
B2, while in our model it has higher energy than the band edge
state B1 (Fig. 2b). This suggests that the anti-bonding B2 state has
been pushed downwards in energy, probably due to interactions
with orbitals at even higher energies that are not included in our
simplified diagram. Without such interaction, the anti-bonding
B2 level would have had large deformation potential. Its
interaction with a higher energy state mostly introduces a
bonding contribution to the B2 state, which cancels part of its
originally dominant anti-bonding character, rendering the final
B2 state at the band edge to be nearly non-bonding (or weakly
bonded). In Supplementary Note 3 (also see Supplementary
Figs. 4 and 5), by adding an additional orbital that interacts with
the highest energy level within the B2 representation based on a
three-level system, we show that the energy lowering of B2 level
indeed leads to a cancellation of bonding and anti-bonding
interactions, together with a much smaller deformation potential
than what it would have if B2 was a predominantly anti-bonding
level. Again, we note that such non-bonding level is possible
because the symmetry protection has prevented its interaction
with many other states of different representations, especially
those at similar energies. Had they interacted with each other, we
would have most probably a band edge state that carries

significant bonding or anti-bonding character, and thus large
deformation potential.

In line with the molecular orbital theory27, we thus summarize
the non-bonding orbital in a solid as one that has dominant
contribution from a single orbital, when its interactions with
other orbitals are mostly symmetry forbidden. Different from
molecular orbital theory, the orbital states for solids are
delocalized as they are superpositions of atomic orbitals
throughout the lattice, which are called crystal orbitals28. Here,
we want to clarify that the symmetry-protected non-bonding
orbitals are not limited to d orbitals as we have seen in half-
Heuslers, as the symmetry analysis does not impose any
constraint on the orbital type. The spatial arrangement of atoms
and the orbitals together determines the group representation of a
given crystal orbital. In fact, our symmetry analysis in Mg2Sn has
shown that its conduction band edge state (at X-point), known to
be predominantly Mg 3s state29, represents another example of
symmetry-protected non-bonding orbital. If we consider only s
and p orbitals, the conduction band edge turns out to be the only
state that is characterized by B2g representation (within D4h point
group). Generally, as long as the symmetry allows, s or p orbitals
can also create non-bonding states. However, due to our current
numerical limitations (our density functional theory (DFT)
calculation predicts Mg2Sn to be a metal instead of a
semiconductor), we do not cover its transport properties in this
work. In passing, we also mention that one can quantify the non-
bonding character through the crystal orbital Hamilton popula-
tion (COHP) analysis, which measures the degree of bonding/
anti-bonding in an energetic scale30 (Methods). Supplementary
Fig. 3 shows that the small acoustic deformation potentials seen
in half-Heuslers indeed match the small COHP values, which
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correspond to a (nearly) non-bonding behavior. This suggests the
non-bonding signature characterized by vanishing COHP could
potentially be used as an indicator for finding materials with weak
electron–acoustic phonon coupling.

Electron dynamics and transport. The weak electron–acoustic
phonon interaction as discovered translates into the low electron
scattering rates, which sums up all scattering channels via EPI23

(Methods). The channel (through acoustic phonons) that is
normally expected to be largest, is now suppressed. As an
example, ZrNiSn shows significantly smaller acoustic phonon
scattering rates than the optical phonons (Fig. 3a and Supple-
mentary Fig. 6), again confirming the strong suppression of
electron–acoustic phonon coupling in the half-Heusler system.

With the scattering rates one can calculate the electron transport
properties31, for which we have also considered the effects of
polar scattering and the screening due to free carriers, together
with the electron-impurity scatterings (see Methods). Figure 3b
shows the calculated mobility (μ) compared with experimental
values from different material families. Notably, half-Heuslers can
exhibit intrinsic room-temperature mobility above 500 cm2 V−1

s−1 despite their large density-of-state effective mass (m*)—a
direct consequence of their weak electron–phonon coupling. This
example demonstrates how large mobility can benefit from weak
EPI strength that can emerge from favorable orbital interactions.
The combination of large density-of-state effective mass and weak
EPI is particularly beneficial for thermoelectric materials, as
suggested by the weighted mobility (U= μm*3/2) frequently used
as an indicator for large power factor. Figure 3c shows the power
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factor at optimal carrier concentrations in the half-Heusler
compounds. Strikingly, several materials exhibit room tempera-
ture power factors higher than 100 µW cm−1 K−2 for both n- and
p-type, and most of the compounds studied show power factors
larger than 50 µW cm−1 K−2. We note that such large power
factors are potentially achievable, as demonstrated by the recent
example in p-type NbFeSb with a record-high-power factor of
~106 µW cm−1 K−2 at room temperature20. Figure 3d–f shows
the calculated temperature-dependent electrical transport prop-
erties (conductivity, Seebeck coefficient, and power factor) for this
compound. The good agreement compared with the experiment20

justifies our computational framework, especially noting that
there is no fitting parameter in our simulation.

Discussion
We would also like to discuss the experimental aspect of realizing
such large power factors and its consequence in the thermo-
electric performance. Figure 4a compares the measured power
factors with our predictions. Except for p-type NbFeSb, most
other materials, however, have experimental power factors lower
than the predicted values. In fact, to reach high-power factor in
NbFeSb, the hot pressing temperature was significantly
increased20, leading to fewer defects and an intrinsic transport
behavior—decreasing mobility as temperature increases, a sig-
nature rarely seen in half-Heuslers. Recent studies in ZrNiSn also
indicate excess Ni creates electron scatterings that severely limit
the charge transport25, which is consistent with our mobility
result for ZrNiSn (Supplementary Fig. 12). All these suggest that,
if the defect concentrations can be reduced in half-Heuslers, one
would expect higher power factors that line up better with our
predictions. This has been corroborated by the preliminary results
in our recently fabricated ZrCoBi samples (fabrication and
characterization details in Methods), which demonstrated large
power factors (for both n-type and p-type) reaching above 30 µW
cm−1 K−2 (Supplementary Fig. 9), significantly improved over
previous work32 (8 µW cm−1 K−2 for n-type2) and closer to our
predicted values (50~60 µW cm−1 K−2). The above discussion
shows the prospect of reaching exceptionally high-power factors

>100 µW cm−1 K−2 for a variety of materials within the half-
Heusler system at room temperature, by further optimizing the
material processing and particularly controlling the defect con-
centrations. At higher temperatures, these theoretical power fac-
tors are expected to become smaller due to the stronger phonon
scatterings. Still, power factors >70 µW cm−1 K−2 have been
found in our calculations in select half-Heusler compounds
(Supplementary Table 7), which hints at a big room for further
improving the power factors of half-Heusler materials from room
temperature to high temperatures.

The large power factors combined with reduced thermal con-
ductivity through nanostructuring technique would lead to out-
standing thermoelectric performance. To this end, we have
performed thermal transport calculations for several compounds
with large power factors. The accumulated contributions to the
electrical and thermal conductivity (Fig. 4b, c) at room tem-
perature show that electrons mostly have MFP’s below 30 nm
while phonon MFP’s span a much wider range up to a few
microns. This large disparity between the dominant electron and
phonon MFP allows improved thermoelectric efficiency by
reducing phonon thermal conductivity while maintaining the
electron transport through grain boundary scattering12,13,33. At
higher temperatures, the dominant electrons’ MFP becomes even
smaller, on the order of 10 nm (Supplementary Fig. 7 and Sup-
plementary Table 7, calculation at 1000 K). We note that the grain
sizes in up-to-date half-Heulser nanocomposites are around
hundreds of nanometers34. If the grain sizes can be pushed down
to tens of nanometers, one can potentially achieve even larger
thermoelectric efficiency in these half-Heusler compounds, par-
ticularly benefiting from their exceptionally large power factors.

In summary, through the first principles study of EPIs, we have
revealed that the origin of the remarkably high-power factors in
half-Heusler materials lies in suppressed electron–acoustic pho-
non couplings. These weak couplings, exemplified by low defor-
mation potentials, emerge from crystal symmetry-protected non-
bonding orbitals at the band edge. The vanishing bonding (anti-
bonding) orbital interactions make the half-Heuslers unique
material platforms that bypass the traditional viewpoint
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according to which they should have acoustic-phonon-limited
electron transport. The understanding of these couplings provides
a strategy for a material to have simultaneously large density-of
states (beneficial for a large power factor, but often associated
with low mobility) and high electron mobility. Our finding
foresees that there is significant room to improve the thermo-
electric performance of half-Heusler systems. These new insights
will stimulate not only the discovery of novel high-performance
thermoelectric materials, but also the development of high-
mobility materials for microelectronic and optoelectronic
applications.

Methods
Material selection. A half-Heusler material consists of three atoms in the unit cell
(denoted as ABC). The crystal structure of half-Heusler materials has only one
parameter—the lattice constant a. Given this number, the positions of the three
atoms (denoted as ABC, where B occupies the tetrahedral site AB forms the
zincblende structure while C is the main group element, for example in ZrNiSn) in
the unit cell can be labeled by rA= (0,0,0)a, rB= (1/4,1/4,1/4)a, and rC= (1/2,
1/2,1/2)a, respectively (atomic arrangement as given in the inset of Fig. 1a, b). The
selection of half-Heuslers for our calculation is based on a recent material genome
search21, which examines all stable half-Heusler compounds for B=Co or Ni, as
also confirmed by their experimental studies. From the list, we select all com-
pounds but excluding those with rare elements (Ru, Os, Rh, Ir, Pd, Pt, Ag, and Au),
adding up to 14 compositions in total. Half-Heuslers with other element types for B
were not studied in this material search, but are known to have good power factor
from experiments. One example is NbFeSb (B=Fe), which possesses highest
reported power factor in semiconductors above room temperature and has also
been included in our calculation20. Therefore a total number of 15 half-Heusler
compounds are examined. This selection does not present any bias towards par-
ticular composition.

Electronic structure calculation. The equilibrium properties of electrons are
calculated from first principles using the QUANTUM ESPRESSO package35. We
use the generalized gradient approximation (GGA) of Perdew, Burke, and Ern-
zerhof36 with the Trouiller-Martins-type norm-conserving semilocal pseudopo-
tential (corresponding to pbe-mt.UPF in the QUANTUM ESPRESSO
pseudopotential library). A cutoff energy of 120 Rydberg and a 6 × 6 × 6 k-mesh are
used to determine the equilibrium lattice constant for half-Heusler materials, as
given in Supplementary Table 1. These are also the same parameters used to
calculate the band structure (Fig. 2a, c)and to feed into the electron–phonon
interpolation procedure (require band energies and electronic wavefunctions).

Half-Heusler materials involve heavy elements, and spin-orbit couplings (SOC)
could potentially affect the band shapes near the band edge and thus alter the
electron transport. For this we have checked the band structures calculated with
and without SOC (Supplementary Fig. 10). The results indicate that the SOC only
has negligible effects on the band shapes near the band edges. To facilitate the
computation, the results reported are, therefore, obtained without including the
SOC effect. We also note that these materials are not magnetic, as the electronic
structure calculation by starting from non-zero atomic magnetizations have
eventually converged to a state with zero magnetization, which indicates that non-
magnetic state is the ground state of the system. The total energies between non-
zero and zero starting magnetizations also lead to almost the same values
(Supplementary Table 8). In the transport calculation, we have thus assumed non-
spin polarized configuration.

Deformation potential. For acoustic phonons it can be shown that at the long
wavelength limit the electron–phonon coupling matrix vanishes with the phonon
wave vector q in a linear fashion:

hψk j∂qVjψkþqi
��� ��� � Ξq ð1Þ

The proportionality factor Ξ is defined as the acoustic deformation potential. We
note that such a deformation potential is uniquely defined based on the EPI, and
directly relates to the electron transport. An alternative definition regards the
deformation potential as the band energy change when the lattice is strained (as
originally suggested by Bardeen and Shockley26), and often used to study band
alignment at interfaces. However, this definition suffers from the problem of ill-
defined energy reference in the first principles framework, and therefore not
employed in our work.

For non-polar optical phonons, the electron–phonon coupling matrix in general
does not vanish at the long wavelength limit. However, based on the group
theory37, the coupling matrix for nondegenerate electron states is zero if the
representations of the optical phonon do not contain identity representation. For
half-Heusler materials, the optical phonons at q= 0 are threefold degenerate
(neglecting the long-range effect, i.e., the LO-TO splitting), corresponding to the T2

representation of group Td. At the conduction band edge at the X-point with group

D2d, T2 reduces to B2+ E. The decomposed representations do not contain identity
representation, and therefore the electron–optical phonon coupling vanishes at
q= 0 for EPI matrix with initial electron at the X-point. For small wave vectors we
found that a linear behavior fits well for the coupling matrix, and in similar fashion
as acoustic phonons we define the deformation potential for non-polar optical
phonons (in unit of energy), which characterizes the strength of electron–optical
phonon scattering, as shown in Fig. 1d.

Symmetry analysis. The symmetry analysis based on group theory for analyzing
the interaction between atomic orbitals and their formation into molecular (or
crystal, in the case of solids) orbitals can categorize the atomic orbitals into dif-
ferent symmetry representations27. One first determines the symmetry group
associated with the crystal structure. For the electron energy at a given k point, we
then reduce the crystal symmetry group to the so-called small group of k (the
collection of the symmetry operations in the crystal symmetry group that do not
alter the wave vector k), which governs the orbital interactions at k. For X-point the
small group is D2d while for L-point it is C3v.

In a tight-binding model (or LCAOs), one writes the crystal wavefunction as
superpositions of atomic orbitals:

ψ ¼
X
iα

ciαφiα ð2Þ

where φ represents each atomic orbital ϕ summed into its Bloch form (for our
study, the ‘‘atomic orbital’’ is understood as in its Bloch summation form) and the
indices iand α denote different atomic sites and orbital types, respectively.

φiα rð Þ ¼ 1ffiffiffiffi
N

p
X
Ri

eik�Riϕiαðr� RiÞ ð3Þ

To obtain the band structure, one usually solves the eigenvalue problem (obtain the
prefactor ciα), which relies on the interaction between different atomic orbitals
through the Hamiltonian Ĥ - 〈φiα|Ĥ|φjβ〉. The application of group theory is to
find certain coupling matrix that is zero when the atomic orbitals belong to
different representations. To characterize the representations particularly for the
crystal orbitals as given by Eq. 3, we note that they are in the form of product of
two terms, with one being the phase factor eik�Ri and the other being the true
atomic orbital ϕiα on a single atomic site. The representation is, therefore, described
by the product representation of these two, which can be derived from group
theory. Detailed derivation can be found in Supplementary Note 4 and
Supplementary Table 9–11.

Crystal orbital overlap population. The crystal orbital overlap population
(COHP) was developed to visualize energy-resolved chemical bonding for solids,
by partitioning the band structure energy into contributions from each orbital
pair30. Following the tight-binding model as given in Eqs. 2 and 3, the COHP can
be defined as:

COHP ¼
X
iα;jβ

c�iαcjβhφiαjĤjφjβi ð4Þ

The product c�iαcjβ characterizes whether the orbitals are in phase or not, indicating
their bonding character. The Hamiltonian matrix element further takes into
account the differences in the bond strength. This is important because the
deformation potential depends on the energetic scales and s–s with greater bonds
(therefore larger overlap) should behave differently than p–p interactions. To
evaluate COHP’s based on first principles calculations, one needs to construct an
effective tight-binding model. This is achieved by projecting the wavefunctions
onto the local atomic orbitals. In this sense the COHP’s as calculated should be
more strictly referred to as pCOHP (p means ‘‘projected’’). More details in the
numerical implementation of COHP and its derivation can be found in Supple-
mentary Note 5.

Thermoelectric transport calculation. Here, we elaborate procedures to calculate
the thermoelectric transport properties from first principles. For electrons at
normal temperatures, their intrinsic scattering rates (or inverse of relaxation times)
are governed by EPIs, and can be derived based on Fermi’s Golden rule31,

1
τkn

¼ π

m0Nq

X
m;qλ

1
ωqλ

hψknj∂qλV jψkþqmi
��� ���2

´ nqλ þ fkþqm

� �
δ Ekn � Ekþqm þ �hωqλ

� �h

þ nqλ þ 1� fkþqm

� �
δ Ekn � Ekþqm � �hωqλ

� �i
ð5Þ

where the band indices (n, m, λ) are specified for the electron–phonon coupling
matrix, m0 is the unit cell mass, Nq is the number of points for the phonon mesh, E
is the electron energy, ω is the phonon frequency, f is the Fermi-Dirac distribution
function for electrons and n is the Bose-Einstein distribution function for phonons.
Direct first principles simulation of electron transport has been formidable in the
past due to the large phase space involved in the scattering rate calculation, which
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requires the knowledge of EPI on very fine electron and phonon meshes to reach
the convergence. This becomes a viable option only recently owing to the devel-
opment of Wannier function-based interpolation scheme for EPI23. We have used
the EPW package38 to interpolate electron–phonon coupling matrices, based on
the electronic information obtained as explained above, as well as the phonon
information calculated on a 6 × 6 × 6 q-mesh (including phonon dispersion and
perturbed potential - ∂qλV in the coupling matrix). The quantities needed for
transport calculations—electron energies, phonon frequencies, and
electron–phonon couplings—are then mapped to much finer meshes through the
real-space Wannier functions. We have checked that the mapped quantities agree
well with the directly calculated values from DFT (Supplementary Fig. 11). The fine
meshes we used for the transport property calculations are given in Supplementary
Table 2. This method readily leads to EPI on fine meshes without incurring much
computational burden, thereby largely accelerating the calculation. The electron
scattering rates are calculated by summing over all possible scattering channels
based on a tetrahedral integration method39.

Given the electron relaxation times, the electron transport properties can be
derived from the Boltzmann transport equation31:

σ ¼ e2

3ΩNk

X
kn

v2knτkn � ∂fkn
∂E

� �
ð6Þ

S ¼ e
3σΩNkT

X
kn

ðEkn � μÞv2knτkn � ∂fkn
∂E

� �
ð7Þ

where e is the electronic charge, Ω is the unit cell volume, Nk is the number of
points for the electron mesh, vkn is the group velocity of electron, and μ is the
Fermi level. With these, the power factor σS2 is readily calculated. A prototypical
temperature dependence of the electron mobility is given in Supplementary Fig. 13,
where we show that it is not convincing enough to conclude whether the electron
scattering is acoustic phonon or optical phonon dominated by just examining the
temperature dependence. For a more realistic estimation of the transport properties
(e.g., mobility and power factor), we have added the effects due to polar
interaction40,41 and the carrier screening based on analytic models (Supplementary
Note 2). The electron-impurity scattering is also considered using the Brooks-
Herring model42 (Supplementary Note 1), which considers the long-range
Coulomb field induced by the ionized impurity, but neglects the short range
interactions due to distortions around the impurity. We also note that the impurity
scattering can also cause the optimal power factor to show a peak with respect to
the temperature increase (Supplementary Fig. 14), which is often observed in
experiments.

For thermal conductivity calculations, we first calculate phonon relaxation
times based on the three-phonon scattering processes, which are characterized by
the anharmonic force constants (we restrict to third-order force constants in our
study). The harmonic and third-order force constants are fitted together based on
first principles calculations that yield forces acting on different atoms for different
sets of displacements in a supercell (2 × 2 × 2 conventional unit cells, 96 atoms).
The harmonic force constants provide the phonon dispersion while the third-order
force constants are used to calculate the phonon relaxation times τqλ. Given these,
the thermal conductivity is obtained as

κph ¼ 1
3ΩNq

X
qλ

v2qλτqλ�hωqλ

∂nqλ
∂T ð8Þ

where ħ is the reduced Planck constant and vqλ is the phonon group velocity. For
thermal conductivity we have neglected the alloying or impurity scattering effects,
because they generally depend on the composition and vary from case to case.
Nonetheless, inclusion of these effects lowers the thermal conductivity, which will
make the thermoelectric efficiency even higher. We have compared our results with
past first principles simulations43 and the thermal conductivity values are
comparable (Supplementary Table 3). More calculation details can be found in
Supplementary Note 1.

Material fabrication and characterization. We prepared the n-type ZrCo0.9-
Ni0.1Bi and p-type ZrCoBi0.8Sn0.2 samples using ball-milling method. Pure ele-
ments (Zr 99.2%, Co 99.8%, Bi 99.999%, Sn 99.8%, and Ni 99.7%, Alfa Aesar) were
loaded in a stainless steel jar according to the stoichiometry and ball milled (SPEX
8000M Mixer/Mill) for 20 h. The ball milled powder were then compressed to disk
shape by a direct current hot pressing process at about 900 °C for 5 min under 50
MPa.

Phase identification of the samples (Supplementary Fig. 8) were carried out by
X-ray diffraction (XRD) on a PANalytical multipurpose diffractometer with an
X’Celerator detector (PANalytical X’Pert Pro). The electrical conductivity and
Seebeck coefficient were measured using a commercial (ZEM-3, ULVAC) system
under a helium atmosphere at varying temperatures (Supplementary Fig. 9). The
power factors are then calculated based on these measured data, with the maximal

values for the n-type and p-type samples reaching ~30 µW cm−1 K−2 and ~40 µW
cm−1 K−2, respectively.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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