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A pressure-robust discretization of Oseen’s equation using
stabilization in the vorticity equation

Naveed Ahmed, Gabriel R. Barrenechea, Erik Burman, Johnny Guzmán,
Alexander Linke, Christian Merdon

Abstract

Discretization of Navier-Stokes’ equations using pressure-robust finite element methods is con-
sidered for the high Reynolds number regime. To counter oscillations due to dominating convection
we add a stabilization based on a bulk term in the form of a residual-based least squares stabi-
lization of the vorticity equation supplemented by a penalty term on (certain components of) the
gradient jump over the elements faces. Since the stabilization is based on the vorticity equation, it is
independent of the pressure gradients, which makes it pressure-robust. Thus, we prove pressure-
independent error estimates in the linearized case, known as Oseen’s problem. In fact, we prove
an O(hk+ 1

2 ) error estimate in the L2-norm that is known to be the best that can be expected for
this type of problem. Numerical examples are provided that, in addition to confirming the theoretical
results, show that the present method compares favorably to the classical residual-based SUPG
stabilization.

1 Introduction

In recent years, it has been observed that the saddle point structure of the incompressible Navier–
Stokes equations

ut − µ∆u+ (u · ∇)u+∇p = f , (1.1)

divu = 0 ,

induces, besides the fulfillment of the well-known discrete Ladyzhenskaya–Babuška–Brezzi (LBB) con-
dition [7, 28], a second fundamental challenge [36]. This second challenge is briefly described as fol-
lows: since the pressure acts as a Lagrangian multiplier for the divergence constraint, the pressure
gradient ∇p will always balance any occurring, unbalanced gradient field in the momentum balance.
Thus, gradient fields in the momentum balance do only change∇p, but not the velocity u, which leads
to the existence of certain equivalence classes of forces — and a corresponding seminorm — that
determine the solution structure of the problem [27]. The purpose of this work is to investigate the re-
lation of this second challenge to the question of how to stabilize dominant advection in high Reynolds
number flows.

Space discretizations that remain accurate in the presence of dominant gradient fields in the momentum
balance — leading to strong pressure gradients — have recently triggered a notable research activity
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[29, 48, 40, 38, 24, 53, 16, 34, 35, 2, 39, 49, 50, 41, 21, 22] and have been called pressure-robust
[42, 3]. This concept explains how these equivalence classes of forces and the special role of gradient-
type forces affect the notion of dominant advection in Navier–Stokes flows. Starting from the idea of
pressure-robustness, in this work we propose a novel discrete stabilization operator for Navier–Stokes
flows that uses only the vorticity equation, and not the entire momentum equation. As a model we
consider the linear steady-state Oseen equation discretized by means of an inf-sup stable pair of spaces
using H1-conforming velocities of polynomials of order k and pressures of order k− 1. To this discrete
system, we add a GLS-type term to the formulation involving the vorticity equation. One of the main
results emerging from the analysis of the method is that we are able to prove the following error estimate
in the convection dominated regime:

‖u− uh‖L2 ≤ Chk+ 1
2 |u|Hk+1 . (1.2)

To the best of our knowledge, this closes a disturbing gap in the theory of mixed finite elements that
had not been overcome yet. In fact, when H1-conforming velocities are used, the same convergence
order for the velocity error in theL2 norm had been achieved for equal order interpolation methods only
(see, e.g., [25, 9, 12, 10, 19]) — though at the price of an additional dependency of the velocity error
on the continuous pressure p, i.e., giving up pressure-robustness. Interestingly, whenever the degree
of spaces is different (such as in the present case) only in the very recent paper [6] such an estimate
has been proven for an incompressible flow problem, at the cost of giving up H1-conformity. In fact, the
spaces used in [6] were only H(div)-conforming.

The main reason why an estimate such as (1.2) has not been obtained using inf-sup stable elements
supplied with classical stabilization mechanisms is linked to the pressure gradient. In fact, when SUPG
stabilization is used, the pressure must be included in the stabilizing terms for consistency, and the
approximation of the pressure, being of a lower order than the one for velocity, prevents from proving
(1.2). Symmetric stabilization methods, such as Continuous Interior Penalty, Local Projection Stabiliza-
tion, and Orthogonal Subscales Method have been successfully used for scalar convection-diffusion
equations. When one of these methods is applied to the Oseen equation with inf-sup stable elements,
the stabilization is independent of the pressure. So, in principle, the application of the same analy-
sis from the convection-diffusion equation to the Oseen equation seems achievable. Nevertheless, a
more detailed inspection shows that their stability and convergence relies on orthogonality properties
of some interpolant and stabilization of the orthogonal complement of the convective term. Consistency
is obtained since this orthogonal complement tends to zero at an optimal rate under refinement. Never-
theless, even when pressure-robust spaces are used, similar orthogonality can not be exploited for the
vector-valued Oseen’s problem since the convection term itself is not divergence-free in general [14].
So, the extension of the existing analysis for a scalar convection-diffusion equation can not be carried
out unless the pressure gradients are eliminated. Based on this observation, in this work we add a sta-
bilizing term that penalizes the equation for the vorticity, where pressure gradients are naturally absent,
and no extra properties of the convective term are required.

The structure of the manuscript is as follows: the introduction is completed by two short sections, one
regarding the motivation and background for the new method introduced in this work, and one containing
preliminary results about vector potentials for divergence-free functions and their regularity. Then, in
Section 2 we introduce the finite element method used in this work, along with various examples of
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finite element spaces that are appropriate for its use. In Section 3, we deliver a detailed numerical
analysis. We achieve optimal convergence orders for the discrete velocity including, as stated earlier,
the first O(hk+ 1

2 ) error estimate for the velocity in the L2-norm for the convection-dominated regime.
A supercloseness result for the discrete pressure, typical for pressure-robust discretizations, is also
derived. In Section 4, we will provide and discuss the results of testing the present method for different
benchmark problems. The benchmarks cover both extreme cases, where the convection term is a
gradient field or a divergence-free vector field. Also, the general case is treated, where the convection
term is a sum of a gradient field and a divergence-free field. The new LSVS stabilization is compared to
a Galerkin discretization and a SUPG stabilization applied to the same pairs of finite element methods.
The numerical results show the improvement provided by the new stabilized method over both the
Galerkin and SUPG methods. Finally, some conclusions are drawn in Section 5.

1.1 Background, motivation, and notations

We start by setting the notation to be used throughout. We will use standard notation for Lebesgue and
Sobolev spaces, in line with, e.g., [28]. In particular, for a domainD ⊆ Rd, d = 2, 3, and q ∈ [1,+∞],
Lq(D) will denote the space of measurable functions such that its qth power is integrable in D (for
q < +∞) and essentially bounded in D (when q = +∞). The space Lq

0(D) denotes the space
of functions in Lq(D) with zero mean value in D. Its norm will be denoted by ‖ · ‖q,D (except when
q = 2, in which case we denote the norm by ‖ · ‖0,D). In addition, the inner product in L2(D) will
be denoted by (·, ·)D. For k ≥ 0 the space W k,q(D) denotes all generalized functions that belong to
Lq(D) with distributional derivatives up to the kth order belonging to Lq(D). We will denote its norm
(seminorm) by ‖ · ‖k,q,D (| · |k,q,D). When q = 2, W k,2(D) = Hk(D), and its norm (seminorm)

is denoted by ‖ · ‖k,D (| · |k,D). The space W k,q
0 (D) (Hk

0 (D)) denotes the closure of C∞0 (D) in
W k,q(D) (Hk(D)). The space H−1(D) denotes the dual of H1

0 (D) with respect to the inner product
in L2(D), the corresponding duality pairing will be denoted by

〈
·, ·
〉
D

, and the associated norm is
denoted by ‖ · ‖−1,D. The vector-valued counterpart of a space X will be denoted simply by Xd, and
the same notation will be used for inner products, norms, and duality pairing.

In order to motivate our new stabilization approach, we now reflect on the notion of dominant advection
for the incompressible Navier–Stokes equations. We set the problem in a bounded, polyhedral, con-
tractible domain Ω ⊆ Rd, d = 2, 3, with Lipschitz continuos boundary ∂Ω. In addition, we define the
space of divergence-free functions in Ω as follows

V(Ω) := {v ∈ H1
0 (Ω)d such that div v = 0 in Ω} , (1.3)

and regard the following weak formulation under homogeneous Dirichlet boundary conditions with time-
independent test functions: search for u(t) ∈ V(Ω) such that for all v ∈ V(Ω) the following holds

d

dt
(u(t),v)Ω + µ(∇u(t),∇v)Ω + ((u(t) · ∇)u(t),v)Ω =

〈
f(t),v

〉
Ω
, (1.4)

in the sense of distributions in D′(]0, T [), with u(0) = u0 in V(Ω)′ fulfilled in the weak sense, see [8].
We remark that the weak formulation is pressure-free, avoiding issues with a possible low regularity of
the pressure field in the transient nonlinear setting.
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Let now f1,f2 ∈ H−1(Ω)d be two forcings differing only by a gradient field, i.e., f1 − f2 = ∇φ with
φ ∈ L2(Ω). We interpret these forcings as functionals in V(Ω)′ and compute for arbitrary v ∈ V(Ω)〈

f1,v
〉

Ω
−
〈
f2,v

〉
Ω

=
〈
f1 − f2,v

〉
Ω

= −(φ,∇ · v)Ω = 0.

Thus, f1 and f2 are identical if they are regarded as functionals in V(Ω)′. This leads to the fundamental
observation that f1 and f2 are velocity-equivalent in the sense that they induce the very same velocity
solution in (1.4). A difference between f1 and f2 can only be recognized in the original equations (1.1),
where the different forcings would lead to pressure gradients differing exactly by ∇φ. Thus, the notion
of velocity equivalence of two functionals in H−1(Ω)d can be formally defined by

f1 ' f2 :⇔ ∃q ∈ L2
0(Ω) : ∀w ∈ H1

0 (Ω)d
〈
f1 − f2,w

〉
Ω

= −(q,∇ ·w)Ω. (1.5)

The corresponding seminorm, which induces these equivalence classes of functionals is naturally given
for f ∈ H−1(Ω)d by

‖f‖V(Ω)′ := sup
0 6=v∈V(Ω)

|
〈
f ,v

〉
Ω
|

‖∇v‖0,Ω

. (1.6)

Clearly, the above supremum is a seminorm since ‖∇φ‖V(Ω)′ = 0 for all φ ∈ L2(Ω).

Turning back to the issue of constructing discrete stabilization operators for dominant advection in
Navier–Stokes flows, we remark that also the strength of the advection term has to be measured in the
seminorm (1.6), and not in the standard H−1(Ω)d-norm. Seeing things from this angle, we see that a
non-zero convective term lies in between the following two extreme cases:

1 a gradient field: no dominant advection in the sense above due to ‖(u · ∇)u‖V(Ω)′ = 0;

2 a divergence-free field: leading to dominant advection.

In the first extreme case (i.e. (1) above), where ‖(u · ∇)u‖−1,Ω is large, although it holds ‖(u ·
∇)u‖V(Ω)′ = 0, pressure-robust mixed methods have been shown recently to outperform classical
mixed methods that are only LBB-stable [27, 24]. They are designed in such a way that any gradient
forcing in (uh · ∇)uh does not change the discrete velocity solution uh, respecting on the discrete
level the equivalence classes that are induced by the seminorm (1.6). From a more applied point of
view, pressure-robust methods have been shown to be important for vortex-dominated flows [27, 51],
where the following relation between the convective term and the pressure gradient holds

(u · ∇)u+∇p ≈ 0, (1.7)

meaning that the centrifugal force within the vortex structure is balanced by the pressure gradient. Such
flows are known as generalized Beltrami flows and are intensively studied in Topological Fluid Dynam-
ics, cf. [5], and they are popular benchmark problems. For this type of flows, due to (1.7) the quadratic
velocity-dependent convection term balances the linear pressure gradient, and then the pressure field is
usually more complicated than the velocity field. As a consequence, it has been demonstrated numeri-
cally for this class of time-dependent high Reynolds number flows that pressure-robust DG methods of
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Stabilizing the vorticity for the Oseen equation 5

order k delivered on coarse grids similarly accurate results as DG methods of order 2k that are only
LBB stable [27].

With respect to (2) above, in order to derive an appropriate convection stabilization for the divergence-
free part of (u · ∇)u, which is actually measured by the seminorm ‖(u · ∇)u‖V(Ω)′ , we try to obtain
a better intuition for the meaning of the weak formulation (1.4). Exploiting that every divergence-free
function v ∈ V(Ω) has a vector potential v = curlχ [28], we can formally derive for smooth enough
functionals f

(f ,v)Ω = (f , curlχ)Ω = (curlf ,χ)Ω.

When applied to the term ut, a similar integration by parts with the curl operator and introducing the
vorticity ω := curlu will yield

d

dt
(u(t),v)Ω =

d

dt
(u(t), curlχ)Ω =

d

dt
(ω(t),χ)Ω,

and applying the same idea to the remaining terms in (1.4) reveals that the weak formulation (1.4) can
be understood as a mathematically precise formulation of the vorticity equation

ωt − µ∆ω + (u · ∇)ω − (ω · ∇)u = curlf , (1.8)

cf. [36, 15]. In this last equation, the gradient of the pressure has completely disappeared. So, starting
from this remark in this work we propose a residual-based stabilization of the vorticity equation, which
we call least squares vorticity stabilization (LSVS). This stabilization strategy includes a higher order
stabilization term on the vorticity equation in the bulk, and a penalty on the jump of the tangential
component of the convective derivative over element faces (see § 2.2 for details). A similar starting
point was used in the meteorology community [45] where a residual SUPG-like method built from (1.8)
for the two-dimensional case (although different from the one proposed in this work, and no analysis
was presented in that work). The same principle has also been applied in recent work on pressure-
robust residual-based a posteriori error control [40, 37].

To keep the technical details down we restrict the analysis to a linearized problem, namely the following
Oseen’s problem on a bounded, connected, contractible, polyhedral Lipschitz domain Ω:

Lu+∇p = f in Ω ,

divu = 0 in Ω , (1.9)

u = 0 on ∂Ω,

where
Lu := σu+ (β · ∇)u− µ∆u . (1.10)

Here, µ > 0 denotes the diffusion coefficient, σ > 0, and the convective term β is assumed to belong
toW 1,∞(Ω)d and to satisfy divβ = 0. This is an elliptic system that is well posed inH1

0 (Ω)d∩V(Ω)×
L2

0(Ω) by Lax–Milgram’s lemma and Brezzi’s theorem for all µ > 0. A weak formulation of Oseen’s
problem, which is in the spirit of the weak formulation (1.4) for the time-dependent incompressible
Navier–Stokes equations, is given by: find u ∈ V(Ω) such that for all v ∈ V(Ω) the following holds

µ(∇u,∇v)Ω + ((β · ∇)u,v)Ω + σ(u,v)Ω =
〈
f ,v

〉
Ω
. (1.11)
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In the following, we will refer to this weak formulation as Oseen’s problem. We will nevertheless always
keep in mind that, given the unique solution of (1.11), there exists a unique pressure p ∈ L2

0(Ω) such
that (u, p) satisfies the mixed weak formulation of (1.9).

1.2 Preliminary results

As it was already mentioned, for every divergence-free function in Ω we can associate a vector potential.
So, natural spaces to consider that can capture the kernel of the divergence operator are given by

Z :=

{
{z ∈ H1(Ω)3 : curlz ∈ H1

0 (Ω)3}, if d = 3 ,
{z ∈ H1(Ω) : curl z ∈ H1

0 (Ω)2}, if d = 2.

We stress the fact that for d = 2, z is a scalar function, while for d = 3, z is a vector-valued function.
To simplify the presentation from now on we will just use the boldface notation for both cases, and the
definition will depend on the context.

Using the generalized Bogovskii operator since Ω is contractible and Lipschitz there exists z with com-
ponents in H2

0 (Ω) [20] such that

curl z = u in Ω. (1.12)

It is important to notice here that z and its first derivative vanish on ∂Ω. If we assume more regularity
of u then we can find a smoother z satisfying (1.12); however, it may not satisfy boundary conditions.
More precisely, the following result is a rewriting of [20, Theorem 4.9 b)], where we have used that,
since the domain Ω is supposed to be contractible, then the cohomology space is zero.

Proposition 1.1. Let Ω ⊂ Rd be a contractible, Lipschitz polygonal/polyhedral domain. Let u ∈
Hr(Ω)3 with r ≥ 1 such that divu = 0. Then, there exists z ∈ Hr+1(Ω)d satisfying (1.12) and the
following stability estimate

‖z‖r+1,Ω ≤ C‖u‖r,Ω , (1.13)

where the constant C > 0 is independent of u.

Note that the boundary conditions z = 0 on ∂Ω might not hold even if u vanishes on ∂Ω if we would
like r ≥ 2. However, in two dimensions we can guarantee that boundary conditions are satisfied.

Corollary 1.2. Under the hypotheses of Proposition 1.1, if d = 2 we can choose z satisfying (1.12)
and (1.13), so that z = 0 on ∂Ω.

Proof. Let us assume that d = 2. By Proposition 1.1 there exists z ∈ Hr+1(Ω) so that (1.12) and
(1.13) hold. Since curl z = u we have that curl z = 0 on ∂Ω. Denoting by t the unit tangent vector
to ∂Ω, this implies that ∇z · t = 0 on ∂Ω and then z is constant on ∂Ω. Let us denote that constant
c ∈ R. Then, the function z̃ = z − c satisfies all the requirements of the result, including estimate
(1.13).
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2 The stabilized finite element method

2.1 Finite element spaces

Let {Th}h>0 be a family of shape-regular simplicial triangulations of Ω. The elements of Th will be
denoted by K with diameter hK := diam(K) and maximal mesh width h = max{hK : K ∈ Th}.
For an element K ∈ Th, we define the set FK of its facets. The set of all facets of the triangulation Th

is denoted by F and Fi denotes the interior facets . For F ∈ F we will denote hF = diam(F ), and
|F | the (d − 1)-dimensional measure of F (area for d = 3 and length for d = 2). The L2(F )-inner
product is denoted by

〈
·, ·
〉
F

. For a vector valued function v we define the the tangential jumps across
F = K1 ∩K2 with K1, K2 ∈ Th as

[[v × n]]|F := v1 × n1 + v2 × n2,

where vi = v|Ki
and ni is the unit normal pointing out of Ki. If F is a boundary face then we define

[[v × n]]|F := v × n.

In addition, we introduce the following broken inner products (assuming the functions involved are reg-
ular enough so every quantity is finite):

(v, w)h :=
∑
K∈Th

(v, w)K ,
〈
v, w

〉
Fi :=

∑
F∈Fi

〈
v, w

〉
F

and
〈
v, w

〉
F

:=
∑
F∈F

〈
v, w

〉
F
, (2.1)

with associated norms ‖ · ‖h, ‖ · ‖h,F, ‖ · ‖h,Fi , respectively.

For s ≥ 1 we define the standard piecewise polynomial Lagrange space by

W s
h := {w ∈ H1

0 (Ω)d : w|K ∈ Ps(K)d ∀K ∈ Th}. (2.2)

Over Th, and for k ≥ 1, we assume we have finite element spaces Vh ⊂ H1
0 (Ω)d, Qh ⊂ L2

0(Ω) and
the associated subspace of (exactly) divergence-free functions

Vh := {vh ∈ Vh : such that div vh = 0 in Ω} , (2.3)

satisfying the following assumptions:

(A1) divVh ⊂ Qh;

(A2) the pair (Vh, Qh) is inf-sup stable;

(A3)W k
h ⊂ Vh ⊂W r

h for some r, k ≥ 1;

(A4) there exists a finite element space Zh ⊂ Z such that curlZh = Vh;

(A5) any z ∈ Z with components in Hk+2(Ω) satisfies the following estimate: for every multi-index
α = (α1, . . . , αd) ∈ Rd, where |α| := α1 + . . .+ αd, the following approximation holds

inf
ψh∈Zh

‖h|α|∂α(z −ψh)‖h ≤ Chk+2‖z‖k+2,Ω for |α| ≤ k + 1;

(A6) if d = 2 we can choose Zh so that Zh ⊂ H1
0 (Ω).

DOI 10.20347/WIAS.PREPRINT.2740 Berlin 2020
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Remark 2.1. We finish this section by giving an alternative interpretation of (A4)-(A5). In fact, (A4)-
(A5) imply that the space V(Ω) can be approximated by functions in Vh in the following sense: for all
v ∈ V(Ω), the following approximation result holds

inf
wh∈Vh

‖∇v −∇wh‖0,Ω ≤ (1 + CF ) inf
wh∈Vh

‖∇v −∇wh‖0,Ω. (2.4)

Here, CF denotes the stability constant of a Fortin operator, whose existence is assured by LBB-
stability, see [36, 7, 28].

2.1.1 Examples of finite element methods satisfying (A1)-(A6)

Assumptions (A1)-(A6) essentially state that the finite element spaces are piecewise polynomials (so
inverse inequalities are valid), and that the space V(Ω) can be approximated, with optimal order, by the
space Vh. In addition, they state that the space of vector potentials associated to the space V(Ω) can
also be approximated, with optimal order, by the space Zh containing the discrete vector potentials.
This last hypothesis will be vital in the error analysis. We now present a few examples of finite element
spaces that satisfy Assumptions (A1)-(A6). The most classical example (and the one we use in our
numerical experiments) is the Scott–Vogelius element [52], where

Vh = W k
h and Qh = {qh ∈ L2

0(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th} . (2.5)

The Scott–Vogelius element is LBB-stable on different kinds of shape-regular triangulations for different
kinds of polynomial orders. For example, on shape-regular, barycentrically refined meshes, the condi-
tion k ≥ d suffices [47, 55, 33]. For d = 2, the condition k ≥ 4 allows to derive LBB-stability on rather
general, shape-regular meshes [35, 52], with potentially modifying the pressure space to allow singular
vertices. Characterizing the discrete potential space Zh for the above examples has been addressed
in several papers [23, 26] and they usually form an exact sequence. In particular, the space Zh in the
case d = 2 on barycentrically refined meshes is the Clough–Tocher C1 space [18]. Additional exact
sequences, possibly using even smoother spaces, that lead to spaces satisfying our assumptions can
be found in [30, 17, 23, 46].

In addition, it is worth mentioning that the requirement (A3), stating that the functions used to approx-
imate the velocity are piecewise polynomials prevents us from using spaces using rational functions,
such as the ones proposed in [32, 31]. Nevertheless, the same analysis carried out below can be ap-
plied, with minor modifications, to that case as well. The same observation can be made about methods
that belong to the IGA family proposed in, e.g., [11, 22, 21], since they are built using smooth rational
functions, rather than polynomials.

2.2 The method

The idea is to remove all the gradient fields from the momentum equations in the stabilization, including
the pressure gradient, by adding stabilization only on the vorticity equation instead of the velocity-
pressure one, since any gradient is in the kernel of the curl operator. This amounts to adding a least
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Stabilizing the vorticity for the Oseen equation 9

squares term of the vorticity equation curlLu = curlf . We multiply this equation by τcurlLv, where
τ is a stabilization parameter chosen so that the stabilizing term scales in the same way as the equation
(see (2.10) below). This leads to the term

(τcurlLu, curlLv)h = (τcurlf , curlLv)h ,

or
(τcurlLu, curl (β · ∇)v)h = (τcurlf , curl (β · ∇)v)h .

For simplicity we only consider the former form for the analysis below. Observe that this is a high order
term, which for smooth flows can be assumed to be of a smaller magnitude than the boundary penalty
term introduced next. In fact, if no further assumptions are made on the velocity space it is not sufficient
to guarantee optimal bounds. Thus, a further control on the jumps of the convective gradients over the
facets, similar to that proposed in [13], needs to be added to the formulation. So, on each internal facet
F we add the term 〈

h2[[(β · ∇)uh × n]], [[(β · ∇)vh × n]]
〉
F
.

Gathering the terms introduced above, the stabilized finite element method analyzed in this work reads:
Find (uh, ph) ∈ Vh ×Qh such that{

a(uh,vh)− b(ph,vh) + S(uh,vh) = L(vh) ∀vh ∈ Vh ,
b(qh,uh) = 0 ∀ qh ∈ Qh ,

(2.6)

where the bilinear forms are defined by

a(uh,vh) := (σuh + (β · ∇)uh,vh)Ω + µ(∇uh,∇vh)Ω , (2.7)

b(ph,vh) := (ph,∇ · vh)Ω , (2.8)

and the stabilizing bilinear form is given by

S(uh,vh) := δ0

{
(τcurlLuh, curlLvh)h +

〈
h2[[(β · ∇)uh × n]], [[(β · ∇)vh × n]]

〉
Fi

}
. (2.9)

Here the broken scalar products are defined in (2.1), the stabilization parameter τ |K = τK is given by

τK := min

{
1,
‖β‖∞,ΩhK

µ

}
h3
K

‖β‖∞,Ω

. (2.10)

Finally, the right-hand side L is given by

L(vh) := (f ,vh)Ω + δ0(τcurlf , curlLvh)h . (2.11)

In the stabilizing terms, δ0 > 0 is a non-dimensional parameter. The value of δ0 does not affect the
qualitative behavior of the error estimates, so we will not track this constant in our error estimates below.
Nevertheless, in Section 4 we will carry out a comprehensive study of its optimal value.

For the analysis we introduce the following mesh-dependent norm

|||v|||2 := ‖σ 1
2v‖2

0,Ω + ‖µ 1
2∇v‖2

0,Ω + |v|2S , (2.12)

DOI 10.20347/WIAS.PREPRINT.2740 Berlin 2020



N. Ahmed, G. Barrenechea, E. Burman, J. Guzmán, A. Linke, C. Merdon 10

where |v|2S := S(v,v). We see that

|||vh|||2 = (a+ S)(vh,vh) ∀vh ∈ Vh . (2.13)

In addition, the pairVh×Qh satisfies the inf-sup condition, by Assumption (A2), which ensures the well-
posedness of Problem (2.6). Moreover, Method (2.6) is strongly consistent for smooth enough (u, p),
this is {

a(u− uh,vh)− b(p− ph,vh) + S(u− uh,vh) = 0 ∀vh ∈ Vh ,
b(qh,u− uh) = 0 ∀ qh ∈ Qh .

(2.14)

Remark 2.2. We remark that Method (2.6) can be also written, equivalently, in the following compact
form: Find uh ∈ Vh such that

a(uh,vh) + S(uh,vh) = L(vh) ∀vh ∈ Vh . (2.15)

This simplified form may be chosen for the analysis, as it does not involve the discrete pressure. How-
ever, we do prefer to write (2.6) involving both pressure and velocity, as (2.15) can not be implemented
in an easy way, due to the necessity to identify the exactly divergence-free space Vh, and its basis
functions. This task is, in general, not straightforward.

Remark 2.3. In case of classical LBB-stable methods like the Taylor–Hood, Bernardi–Raugel, or the
mini elements, a similar approach employing the corresponding space of discretely divergence-free
vector fields (still denoted by Vh, but note that its elements are no longer exactly divergence-free)
would lead to: for all vh ∈ Vh it holds

a(u− uh,vh) + S(u− uh,vh) = −(∇p,vh)Ω, (2.16)

i.e., a consistency error of the form−(∇p,vh)Ω appears. Introducing the notion of a discrete Helmholtz–
Hodge projector Ph [43, 42] as theL2(Ω)-projection onto the space of discretely divergence-free vector
fields Vh, one recognizes that this consistency error quantifies nothing else than the strength of this
discrete Helmholtz–Hodge projector. Note that the continuous Helmholtz–Hodge projector of any gra-
dient field ∇φ ∈ L2(Ω)d is zero, i.e., it has a very similar meaning as curl∇φ = 0, see [36]. For
a LBB-stable method with a discrete pressure space with elementwise polynomials of order kp, it is a
classical result that the discrete Helmholtz–Hodge projector of any smooth gradient fields vanishes with
order kp + 1 in the following discrete V′h-norm (that can be interpreted as a H−1(Ω)d semi norm):

sup
0 6=vh∈Vh

|(∇φ,vh)Ω|
‖∇vh‖0,Ω

≤ Chkp+1|φ|kp,Ω.

But if one estimates the strength of the discrete Helmholtz–Hodge projector in a dual seminorm linked
to L2(Ω), one only obtains:

sup
0 6=vh∈Vh

|(∇φ,vh)Ω|
‖vh‖0,Ω

≤ Chkp|φ|kp+1,Ω , (2.17)

see [43]. We conjecture that (2.17) essentially explains why it was not possible in the past to get an
improved convergence order hk+ 1

2 for advection stabilization of different order LBB-stable methods like
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Stabilizing the vorticity for the Oseen equation 11

the Taylor–Hood or Bernardi–Raugel elements. The culprit of this behavior are gradient fields in the
momentum balance. Note that the discrete Helmholtz–Hodge projector of any pressure-robust method
vanishes for arbitrary gradient fields [43, 42], and thanks to the link between the mini element and
equal-order P1 × P1 elements, an improved O(hk+ 1

2 ) order for the velocity can also be proven for the
former under advection stabilization.

3 Analysis of the approximation error

The two following results are classical, and will be used in the proof of our error estimates. The first
is the following local trace inequality: there exists C > 0 such that for all K ∈ Th, F ∈ FK , and all
v ∈ H1(K),

‖v‖0,F ≤ C
(
h
− 1

2
K ‖v‖0,K + h

1
2
K |v|1,K

)
. (3.1)

We also recall the following inverse inequality: for all `, s,m ∈ N such that 0 ≤ ` ≤ s ≤ m and all
q ∈ Pm(K) there exists C > 0 such that

|q|s,K ≤ Ch`−sK |q|`,K . (3.2)

Finally, as our main interest is to track the dependency of the error estimates on the viscosity µ, in order
to avoid unnecessary technicalities, we will not track their dependency on β, or σ.

3.1 An error estimate for the velocity

In order to state the error estimates we define the following norm, for functions that are regular enough,

‖z‖2
? := |||curl z|||2 + (h+ µ)

4∑
s=0

h2s−4‖Dsz‖2
h . (3.3)

Here, by Dsz we mean the tensor (∂αz)|α|=s, this is, gradient for s = 1, Hessian matrix for s = 2,
etc. We start by proving a quasi-best approximation result with respect to this norm.

Theorem 3.1. Let u ∈ H1
0 (Ω)d ∩ H3(Ω)d be the solution to (1.9) and let z be its corresponding

potential given by Corollary 1.2. Let (uh, ph) be the solution of (2.6). If d = 3 we assume, in addition,
that β · n = 0 on ∂Ω. Then, the following error estimate holds

|||u− uh||| ≤ C‖z −ψh‖? for all ψh ∈ Zh. (3.4)

The constant C > 0 is independent of h and µ.

Proof. Let e = u−uh. We letψh ∈ Zh be arbitrary and setwh := curlψh. We note thatwh ∈ Vh

and then, using the Galerkin orthogonality (2.14) we have

|||e|||2 = a(e,u−wh) + S(e,u−wh). (3.5)
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We bound the right-hand side of (3.5) term by term. For the rest of the proof, ε > 0 is arbitrary but will
be chosen sufficiently small later. Using Cauchy–Schwarz’s and Young’s inequalities we see that

S(e,u−wh) ≤ ε|||e|||2 + C|||u−wh|||2. (3.6)

We re-write the first term in (3.5) by adding and subtracting (element-wise) µ∆e to obtain

a(e,u−wh) = (Le,u−wh)h + (µ∆e,u−wh)h + (µ∇e,∇(u−wh))Ω . (3.7)

To bound the third term on the right-hand side of (3.7), we proceed as in (3.6) we get

(µ∇e,∇(u−wh))Ω ≤ ε|||e|||2 + C|||u−wh|||2.
For the second term in (3.7) we add and subtractwh, use an inverse inequality and Young’s inequalities,
and arrive at

(µ∆e,u−wh)h = (µ∆(u−wh),u−wh)h + (µ∆(wh − uh),u−wh)h

≤ 1

2
‖h√µ∆(u−wh)‖2

h +
1

2

(
1 +

1

ε

)
‖h−1√µ(u−wh)‖2

h +
ε

2
‖h√µ∆(wh − uh)‖2

h

≤ 1

2
‖h√µ∆(u−wh)‖2

h +
1

2

(
1 +

1

ε

)
‖h−1√µ(u−wh)‖2

h + C
ε

2
‖√µ∇(wh − uh)‖2

h

≤Cµ
(
‖h∆(u−wh)‖2

h + ‖∇(u−wh)‖2
0,Ω + ‖h−1(u−wh)‖2

h

)
+ C

ε

2
‖√µ∇(u− uh)‖2

h

≤Cµ
3∑

s=1

h2s−4‖Ds(z −ψh)‖2
h + Cε ‖√µ∇e‖2

h

≤C‖z −ψh‖2
? + Cε |||e|||2.

We are only left with the bound for the first term on the right-hand side of (3.7). First, integrating by
parts we rewrite it as follows

(Le,u−wh)h =(Le, curl (z −ψh))h = (curlLe, z −ψh)h +
〈
[[Le× n]], z −ψh

〉
F
. (3.8)

Applying the Cauchy–Schwarz’s and Young’s inequalities leads to the following bound for the first term
in the right-hand side of (3.8)

(curlLe, z −ψh)h ≤ ε‖τ 1
2 curlLe‖2

h + C‖τ− 1
2 (z −ψh)‖2

h ≤ ε|||e|||2 + C‖z −ψh‖2
? , (3.9)

where in the last step we used that ‖τ− 1
2 (z − ψh)‖2

h ≤ C ‖z − ψh‖2
?, independently of the value of

µ. Next, for d = 2 we use that z −ψh = 0 (that follows from Assumption (A6)). In the case d = 3 we
decompose β = β · nn+ (β − β · nn) =: βn + βt. Since βt is parallel to the boundary ∂Ω, we
have that βt · ∇e = 0 (since e = 0 on ∂Ω). So, using e = 0 and βn = 0 (if d = 3) on ∂Ω we see
that the second term is equal to〈

[[Le× n]], z −ψh

〉
F

=
〈
[[(β · ∇)e× n]], z −ψh

〉
Fi +

〈
(β · ∇)e× n, z −ψh

〉
∂Ω︸ ︷︷ ︸

=0

+
〈
[[−µ∆e× n]], z −ψh

〉
F

=
〈
[[(β · ∇)e× n]], z −ψh

〉
Fi +

〈
[[−µ∆e× n]], z −ψh

〉
F
. (3.10)
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Stabilizing the vorticity for the Oseen equation 13

To bound the first term we use Young’s inquality and the local trace theorem (3.1) to get to〈
[[β · ∇e× n]], z −ψh

〉
Fi ≤ ε‖h[[(β · ∇)e× n]]‖2

h,Fi + C‖h−1(z −ψh)‖2
h,Fi

≤C ε|||e|||2 + C

1∑
s=0

h2s−3‖Ds(z −ψh)‖2
h

≤C ε|||e|||2 + C‖z −ψh‖2
?.

For the remaining term in (3.10) we add and subtractwh and get〈
[[−µ∆e× n]], z −ψh

〉
F

=
〈
[[−µ∆(u−wh)× n]], z −ψh

〉
F

+
〈
[[−µ∆(wh − uh)× n]], z −ψh

〉
F
.

(3.11)

To bound the first term of (3.11) we apply Cauchy–Schwarz’s and Young’s inequalities, and the local
trace result (3.1) to arrive at〈

[[−µ∆(u−wh)× n]], z −ψh

〉
F
≤ 1

2
‖h3/2√µ[[∆(u−wh)× n]]‖2

h,F +
1

2
‖h−3/2√µ(z −ψh)‖2

h,F

≤C µ
(
h2‖∆(u−wh)‖2

h + h4‖∇∆(u−wh)‖2
h + h−4‖z −ψh‖2

h + h−2‖∇(z −ψh)‖2
h

)
≤Cµ

4∑
s=0

h2s−4‖Ds(z −ψh)‖2
h

≤C ‖z −ψh‖2
? .

For the second term on (3.11) we use Cauchy-Schwarz’s inequality, the local trace result (3.1), the
inverse estimate (3.2), and Young’s inequality, leading to〈

[[−µ∆(wh − uh)× n]], z −ψh

〉
F
≤ ε|||wh − uh|||2 + C‖h−3/2√µ(z −ψh)‖2

h,F

≤ 2ε|||e|||2 + C‖z −ψh‖2
? .

Hence, combining the above results and inserting the bounds into (3.5) gives

|||e|||2 ≤ Cε|||e|||2 + C‖z −ψh‖2
?.

Taking ε sufficiently small and re-arranging terms finishes the proof.

The last result stresses the fact that the approximation of the solution depends only on how well the
spaceZh approximates the spaceZ, or, in other words, on how well the potential z is approximated by
Zh. To make this bound more precise, we use Assumption (A5) and Corollary 1.2 to obtain the following
result.

Corollary 3.2. Let us assume, in addition to the hypotheses of Theorem 3.1, that u ∈ H1
0 (Ω)d ∩

Hk+1(Ω)d. Then, there exists a constant C > 0, independent of h and µ, such that

|||u− uh||| ≤ Chk
(
h

1
2 + µ

1
2

)
‖u‖k+1,Ω . (3.12)

DOI 10.20347/WIAS.PREPRINT.2740 Berlin 2020



N. Ahmed, G. Barrenechea, E. Burman, J. Guzmán, A. Linke, C. Merdon 14

Two conclusions can be drawn from this last result. First, that Method (2.6) has optimal, pressure-
robust convergence rates. In addition, if the extra hypothesis µ ≤ Ch is imposed, then (3.12) leads to
an O(hk+ 1

2 ) error estimate. This sort of estimate has only been obtained very recently for an incom-
pressible problem using RT and BDM spaces in [6], and, up to our best knowledge, the present result
constitutes the first time such an estimate is obtained for stabilized methods for the Oseen equation.
We stress that the shape of the stabilization used is essential to obtain these results.

3.2 An error estimate for the pressure

For regular enough solutions (at least H3(Ω)d for the velocity), we will now show a superclosede-
ness result for the discrete pressure that depends on the velocity error estimate only, which makes it
pressure-robust. We denote by πh : L2(Ω)→ Qh the L2(Ω) orthogonal projection onto Qh.

Thanks to the Galerkin orthogonality (2.14) and the fact that divVh ⊆ Qh (see (A1)) we get, for an
arbitrary vh ∈ Vh,

a(u− uh,vh) + S(u− uh,vh) = (p− ph,∇ · vh)Ω

= (πhp− ph,∇ · vh)Ω.

The Vh×Qh is an inf-sup stable pair (see (A2)), this guarantees the existence of a Fortin operator onto
Qh that commutes with the divergence. Since, in addition divVh ⊆ Qh (see (A1)), then this operator
is surjective. So, there exists a xh ∈ Vh such that

divxh = πhp− ph in Ω and ‖∇xh‖0,Ω ≤ C‖πhp− ph‖0,Ω , (3.13)

where C > 0 only depends on Ω. Thus, integrating by parts, using that divβ = 0, and Cauchy–
Schwarz’s inequality, we arrive at

‖πhp− ph‖2
0,Ω = a(u− uh,xh) + S(u− uh,xh)

≤ |||u− uh||| · |||xh||| − ((β · ∇)xh,u− uh)Ω

≤ |||u− uh||| · |||xh|||+ ‖β‖∞,Ω‖u− uh‖0,Ω‖∇xh‖0,Ω . (3.14)

Thanks to the stability result in (3.13), once the bound |||xh||| ≤ C ‖πhp− ph‖0,Ω is established, then
(3.14) provides an error estimate for πhp − ph in terms of the velocity error estimate only. So, it only
remains to bound the triple norm of xh. First, using the stability bound given in (3.13) and the Poincaré
inequality we get

|||xh||| ≤ σ
1
2‖xh‖0,Ω + µ

1
2‖∇xh‖0,Ω + |xh|S

≤ C(σ
1
2 + µ

1
2 )‖πhp− ph‖0,Ω + |xh|S . (3.15)

Finally, using the inverse inequality (3.2), the local trace result (3.1), and the definition of the | · |S-
seminorm, we get

|xh|S ≤ C
(

1 + h
1
2 + µτ

1
2h−2

)
‖πhp− ph‖0,Ω , (3.16)
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Stabilizing the vorticity for the Oseen equation 15

where the constant C depends on σ and different norms of β, but not on µ. Inserting (3.15) and (3.16)
into (3.14), and using that µτ

1
2h−2 ≤ Cµ

1
2 , regardless the value of µ, we have proven the following

error estimate for the discrete pressure.

Theorem 3.3. Let us assume the hypotheses of Theorem 3.1. Then, there exists C > 0, independent
of h and µ, such that

‖πhp− ph‖0,Ω ≤ C
(

1 + µ
1
2 + h

1
2

)
|||u− uh||| . (3.17)

Remark 3.4. The last result states that the difference πhp − ph satisfies the same error estimate as
the velocity, independently of the value of µ. In particular, this difference behaves like O(hk+ 1

2 ) in the
convection dominated regime. In addition, using the triangle inequality we get

‖p− ph‖0,Ω ≤ ‖p− πhp‖0,Ω + ‖πhp− ph‖0,Ω . (3.18)

This, combined with the bound proven in Theorem 3.3 and the standard approximation properties of πh
(see, e.g., [28]), gives an optimal order O(hk) error estimate for the pressure whenever Qh contains
piecewise polynomials of order k − 1 (the case of, e.g., Scott–Vogelius elements of order k), and the
pressure p is regular enough. However, due to the degree of the polynomials belonging toQh, this error
bound can not be improved.

4 Numerical examples

This section illustrates the theoretical findings with several numerical examples and compares the
streamline-upwind Petrov–Galerkin (SUPG) method with the new least-square vorticity stabilization
(LSVS) applied to the Scott–Vogelius finite element method of order 2, given by

Vh = W 2
h and Qh := {qh ∈ L2

0(Ω) : qh|K ∈ P1(K) , ∀K ∈ Th} .

Inf-sup stability is ensured on barycentric refined triangulations as the ones used in the examples below.
The detailed implementation is stated below and all computations were performed using the finite ele-
ment package ParMooN [54] and are compared and confirmed with a code written using FENiCS [44].

The discrete problem reads: Find (uh, ph) ∈ Vh × Qh such that, for all (vh, qh) ∈ Vh × Qh, the
following holds

a(uh,vh) + b(ph,vh) + b(qh,uh) + Sstab(uh,vh) = Lstab(vh) , (4.1)

where Sstab and Lstab can be, either the novel LSVS stabilisation given by (2.9) an (2.11), or the SUPG
stabilization given by

SSUPG(uh,vh) := δ0

∑
K∈Th

h2
K (Luh,β · ∇vh)K ,

LSUPG(vh) := (f ,vh)Ω + δ0

∑
K∈Th

h2
K(f ,β · ∇vh)K .

DOI 10.20347/WIAS.PREPRINT.2740 Berlin 2020



N. Ahmed, G. Barrenechea, E. Burman, J. Guzmán, A. Linke, C. Merdon 16

To assess the influence of the stabilization parameter δ0 in SUPG and LSVS methods, the positive
constant δ0 varies across the wide range from 10−5 to 103. Concerning the choice of stabilization
parameter for convection-dominated problems, e.g., see [4], a good parameter choice for the SUPG
method is δ0 ∈ (0, 1). Based on a parameter study presented in the next section, and from previous
experience (see, e.g., [1, 4]), all the simulations for convergence studies were performed with δ0 = 0.25
for the SUPG method and δ0 = 0.006 for the LSVS method. Additionally, Example 1, Figure 5, confirms
that the present method presents a much more robust behavior with respect to the value of δ0 than the
SV-SUPG method.

4.1 Numerical results

We visit four different examples of the steady-state Oseen problem defined on the domain Ω = (0, 1)2.
All calculations are carried out on non-uniform grids. Thus, a sequence of shape-regular unstructured
grids was generated, and each of these grids was barycentrically refined, thereafter, in order to guar-
antee inf-sup stability. The coarsest grid is depicted in Fig. 1. The corresponding velocity and pressure
degrees of freedoms are listed next to it. In all the tables below, we use the following shorthand notation:

level ndof uh ndof ph total ndof
1 362 252 614
2 1394 1008 2402
3 5474 4032 9506
4 21698 16128 37826
5 86402 64512 150914

Figure 1: Initial mesh level 1 (left) and number of degrees of freedom for all refinement levels (right).

L2(u) := ‖u− uh‖0,Ω , H1(u) := ‖∇(u− uh)‖0,Ω , L2(p) := ‖p− ph‖0,Ω .

4.1.1 Example 1: Potential flow example

The first example concerns a steady potential flow of the form u = ∇h with harmonic potential h =
x3 − 3xy2. Then, the solution

(u, p) =

(
∇h,−1

2
|∇h|2 +

14

5

)
,
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satisfies the Oseen problem (1.9) with the source term f = 0,β = u, and inhomogeneous Dirichlet
boundary conditions.

Figures 2, 3 and 4 display the results obtained by the plain divergence-free Galerkin Scott-Vogelius finite
element method (SV), the novel least-square vorticity convection stabilization (SV-LSVS) method and
the classical streamline-upwind Petrov-Galerkin (SV-SUPG) method, respctively, on refinement level 2
and the two parameter choices σ = 0 and σ = 1.

10−9 10−7 10−5 10−3 10−1
10−16

10−12

10−8

10−4

100

µ

SV with σ = 0

‖eu‖
‖∇eu‖
‖ep‖

10−9 10−7 10−5 10−3 10−1

10−15

10−11

10−7

10−3

µ

SV with σ = 1

‖eu‖
‖∇eu‖
‖ep‖

Figure 2: Example 1: error plots of different norms vs the viscosity parameter µ for Scott-Vogelius finite
element methods on refinement level 2 (σ = 0 left and σ = 1 right).

The main observation is that both the plain SV method and the SV-LSVS method produce the ex-
act velocity solution in this example, while the SV-SUPG method does not. Note, that this example is
designed such that the exact solution belongs to the velocity ansatz space and any pressure-robust
method therefore should be able to compute it exactly. Hence, this example demonstrates that SV-
SUPG introduces some pressure-dependent error into the system that perturbs the discrete velocity
solution. Moreover, at least in the parameter range µ ∈ [10−4, 100] the velocity error scales with µ−1

which hints to a locking effect as observed for classical non-pressure-robust finite element methods in
pressure-dominant situations. The effects can be explained by a closer look at the convection term. In
this example σu + (β · ∇)u completely balances the pressure gradient and therefore is a gradient
itself. A pressure-robust stabilisation does not need to stabilize gradient forces and therefore SV-LSVS
(since any curl of a gradient vanishes) does not see this gradient and behaves identically to the plain
SV method here — independent of the choice of the stabilization parameter. The SV-SUPG method on
the other hand effectively sees and tries to stabilize the force∇h(p− ph) which does not vanish.

To round up the impression, Figure 5 displays the L2 velocity error of the SV-SUPG method on different
mesh refinement levels and different choices of the SUPG stabilisation parameter δ0. Usually, such a
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10−9 10−7 10−5 10−3 10−1

10−3

10−2

10−1

µ

SV-SUPG with σ = 0

‖eu‖
‖∇eu‖
‖ep‖

10−9 10−7 10−5 10−3 10−1

10−3

10−2

10−1

µ

SV-SUPG with σ = 1

‖eu‖
‖∇eu‖
‖ep‖

Figure 3: Example 1: error plots of different norms vs the viscosity parameter µ for Scott-Vogelius
element with SUPG stabilization on refinement level 2 (σ = 0 left and σ = 1 right).

10−9 10−7 10−5 10−3 10−1

10−14

10−11

10−8

10−5

10−2

µ

SV-LSVS with σ = 0

‖eu‖
‖∇eu‖
‖ep‖

10−9 10−7 10−5 10−3 10−1

10−14

10−11

10−8

10−5

10−2

µ

SV-LSVS with σ = 1

‖eu‖
‖∇eu‖
‖ep‖

Figure 4: Example 1: error plots of different norms vs the viscosity parameter µ for Scott-Vogelius finite
element method with LSVS stabilization on refinement level 2 (σ = 0 left and σ = 1 right).
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Figure 5: Example 1: L2 velocity error for different stabilization parameters and different refinement
levels for SV-SUPG (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.

parameter plot leads to the conclusion that the optimal choice of δ0 is around 0.25. This is not the
case in this extreme example. Here, the error scales approximately linearly with δ0 and is optimal for
δ0 = 0, thus reinforcing the idea that the SUPG stabilization introduces a consistency error that affects
the accuracy of the method.

4.2 Example 2: Planar lattice flow

In this example, we compare the accuracy of all methods considered in the previous example. This time
the exact velocity is not in the velocity ansatz space. However, the convection term is still a gradient in
the limit uh → u. To this end, we fix µ = 10−5, β = u and boundary conditions are chosen such that

u =
(

sin(2πx) sin(2πy), cos(2πx) cos(2πy)
)
, p =

1

4
(cos(4πx)− cos(4πy))

is the solution of the Oseen problem (1.9) with f = σu− µ∆u.

Figures 6-8 display the convergence history of all three methods under consideration. The plain SV
method does not convergence optimally, at least pre-asymptotically for σ = 1 (average EOC=2.35).
Also the SV-SUPG method shows suboptimal behavior for σ = 1 (average EOC=2.24) and for σ =
0 (average EOC=1.95). SV-SUPG is not really much more accurate than the plain SV method on
finer meshes, while it stabilizes the solution on coarser meshes. Also, for other choices of the SUPG
stabilisation parameter δ0, see Figure 9, the situation does not improve much, although the optimum on
coarse meshes seems to be slightly shifted toward smaller values.

DOI 10.20347/WIAS.PREPRINT.2740 Berlin 2020



N. Ahmed, G. Barrenechea, E. Burman, J. Guzmán, A. Linke, C. Merdon 20

1 2 3 4 5
10−4

10−3

10−2

10−1

100

101

refinement levels

SV with σ = 0

O(h2)

O(h5/2)

1 2 3 4 5

10−4

10−3

10−2

10−1

100

101

refinement levels

SV with σ = 1

‖eu‖
‖∇eu‖
‖ep‖

Figure 6: Example 2: error plots of different norms on different refinement levels for Scott–Vogelius finite
element methods (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 7: Example 2: error plots of different norms on different refinement levels for Scott–Vogelius with
SUPG stabilization (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 8: Example 2: error plots of different norms on different refinement levels for Scott–Vogelius with
LSVS stabilization (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 9: Example 2: L2 velocity error for different stabilization parameters and different refinement
levels for SV-SUPG (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 10: Example 2: L2 velocity error for different stabilization parameters and different refinement
levels for SV-LSVS (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.

The SV-LSVS method on the other hand shows optimal convergence rates for σ = 1 (average EOC=2.96)
and delivers much smaller velocity errors on the finest mesh than the other two methods, compare also
the numbers in Tables 1 and 2 for σ = 0 and σ = 1, respectively. Figure 10 shows a similar parameter
study for SV-LSVS. One can see for both σ = 0 and σ = 1 that the optimal value lies between the
interval 10−2 to 10−3.

4.3 Example 3: modified Planar lattice flow

The third example takes the flow u of Example 2 and modifies the right-hand side forcing such that
β = (0, 1)T and p = 0. Note that this time (β · ∇)u is a divergence-free field. Therefore, it is
expected that this example defines the best-case scenario for the SV-SUPG method due to p = 0. In
fact, this is the case, as SV-SUPG does improve the results given by the plain Galerkin method, but still
SV-LSVS provide a more accurate solution.

Tables 3 and 4 confirm this expectation that the SV-SUPG method works as well as the SV-LSVS
method. One can see that the SV-SUPG method converges optimally. However, the SV-LSVS method
delivers a slightly better velocity than the SV-SUPG method (a factor 6 smaller on the finest mesh).
Figure 14 confirms that SV-SUPG method works close to its optimum with the default parameter δ0 =
0.25. Figure 15 for the SV-LSVS method on the other hand shows that δ0 = 0.006 is a good estimate
for optimal parameter value.
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Table 1: Example 2: velocity and pressure errors for all methods and different refinement levels for
σ = 0.

ref SV SV-SUPG SV-LSVS
L2(u) H1(u) L2(p) L2(u) H1(u) L2(p) L2(u) H1(u) L2(p)

1 8.020e-1 19.86 3.448e-1 1.179e-1 3.090 7.888e-2 1.681e-1 3.2900 2.213e-1
2 1.420e-1 5.335 6.186e-2 8.578e-2 1.903 4.152e-2 5.295e-2 1.0544 5.514e-2
3 2.582e-2 2.682 8.659e-3 1.911e-2 9.348e-1 8.968e-3 1.058e-2 3.045e-1 1.180e-2
4 2.668e-3 7.860e-1 1.291e-3 4.056e-3 3.888e-1 2.012e-3 1.629e-3 8.472e-2 2.784e-3
5 4.007e-4 1.832e-1 2.891e-4 5.303e-4 1.316e-1 3.333e-4 1.858e-4 1.848e-2 6.697e-4
EOC 2.74 1.69 2.55 1.95 1.14 1.97 2.46 1.87 2.09

Table 2: Example 2: velocity and pressure errors for all methods and different refinement levels for
σ = 1.

ref SV SV-SUPG SV-LSVS
L2(u) H1(u) L2(p) L2(u) H1(u) L2(p) L2(u) H1(u) L2(p)

1 1.790e-1 8.326 9.088e-2 1.090e-1 2.923 8.038e-2 1.387e-1 3.1052 2.222e-1
2 3.367e-2 3.497 2.152e-2 2.105e-2 1.277 1.790e-2 2.022e-2 8.847e-1 5.771e-2
3 1.015e-2 1.900 5.619e-3 5.501e-3 7.322e-1 4.364e-3 2.751e-3 2.496e-1 1.264e-2
4 1.679e-3 5.918e-1 1.142e-3 1.141e-3 3.306e-1 1.048e-3 3.133e-4 6.505e-2 2.846e-3
5 2.623e-4 1.638e-1 2.616e-4 2.194e-4 1.215e-1 2.550e-4 3.741e-5 1.658e-2 6.775e-4
EOC 2.35 1.42 2.11 2.24 1.15 2.08 2.96 1.89 2.09

Table 3: Example 3: velocity and pressure errors for all methods and different refinement levels for
σ = 0.

ref SV SV-SUPG SV-LSVS
L2(u) H1(u) L2(p) L2(u) H1(u) L2(p) L2(u) H1(u) L2(p)

1 4.237e-1 20.605 2.640e-1 1.672e-1 4.398 1.207e-1 1.742e-1 3.1664 2.823e-1
2 7.657e-2 5.6154 4.357e-2 4.248e-2 2.228 2.422e-2 2.982e-2 1.0913 6.163e-2
3 2.146e-2 3.5678 1.323e-2 9.326e-3 1.041 5.938e-3 3.875e-3 3.119e-1 1.320e-2
4 4.124e-3 1.3164 2.561e-3 1.832e-3 4.462e-1 1.300e-3 4.836e-4 7.899e-2 2.307e-3
5 5.356e-4 3.1968e-1 3.835e-4 3.793e-4 1.818e-1 2.969e-4 5.916e-5 1.918e-2 3.389e-4
EOC 2.41 1.50 2.36 2.20 1.15 2.17 2.88 1.84 2.43

4.4 Example 4: ’superposition’ of Example 2 and 3

The last example combines the flows of Examples 2 and 3 and employs a superposition of their convec-
tive forces. This is, the convective term is given by β := u+ (0, 1)T , while u and p are the same as in
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Figure 11: Example 3: error plots of different norms on different refinement levels for Scott-Vogelius
finite element methods (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 12: Example 3: error plots of different norms on different refinement levels for Scott-Vogelius with
SUPG stabilization (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 13: Example 3: error plots of different norms on different refinement levels for Scott-Vogelius with
LSVS stabilization (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 14: Example 3: L2 velocity error for different stabilization parameters and different refinement
levels for SV-SUPG (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 15: Example 3: L2 velocity error for different stabilization parameters and different refinement
levels for SV-LSVS (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.

Table 4: Example 3: velocity and pressure errors for all methods and different refinement levels for
σ = 1.

ref SV SV-SUPG SV-LSVS
L2(u) H1(u) L2(p) L2(u) H1(u) L2(p) L2(u) H1(u) L2(p)

1 3.397e-1 17.27 2.402e-1 1.518e-1 4.056 1.203e-1 1.536e-1 3.1088 2.911e-1
2 6.418e-2 5.188 4.125e-2 3.504e-2 1.927 2.386e-2 2.626e-2 1.0425 6.320e-2
3 1.694e-2 2.781 1.115e-2 7.981e-3 9.191e-1 5.768e-3 3.483-e3 3.033e-1 1.331e-2
4 3.107e-3 1.062 2.152e-3 1.654e-3 4.122e-1 1.298e-3 4.308e-4 7.772e-2 2.310e-3
5 4.646e-4 2.952e-1 3.725e-4 3.490e-4 1.732e-1 3.014e-4 5.178e-5 1.905e-2 3.390e-4
EOC 2.38 1.47 2.33 2.19 1.14 2.16 2.88 1.84 2.44

Example 2. This is somehow considered to be a ’realistic’ situation where the (discrete and asymptotic)
convective forcing has an irrotational part (as in Examples 1 and 2) and a divergence-free part (as in
Example 3).

As expected from the experience with the other examples, both stabilization methods significantly im-
prove the errors compared to the plain SV method. There is also a clear improvement of SV-LSVS
compared to SV-SUPG. Only SV-LSVS has an optimal convergence behavior, compare Figures 16-18
and Tables 5 and 6.
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Figure 16: Example 4: error plots of different norms on different refinement levels for Scott-Vogelius
finite element methods (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 17: Example 4: error plots of different norms on different refinement levels for Scott-Vogelius with
SUPG stabilization (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 18: Example 4: error plots of different norms on different refinement levels for Scott-Vogelius with
convection stabilization (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 19: Example 4: L2 velocity error for different stabilization parameters and different refinement
levels for SV-SUPG (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.
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Figure 20: Example 4: L2 velocity error for different stabilization parameters and different refinement
levels for SV-LSVS (σ = 0 left and σ = 1 right) and fixed viscosity µ = 10−5.

Table 5: Example 4: velocity and pressure errors for all methods and different refinement levels for
σ = 0.

ref SV SV-SUPG SV-LSVS
L2(u) H1(u) L2(p) L2(u) H1(u) L2(p) L2(u) H1(u) L2(p)

1 5.328e-1 2.269e+1 3.339e-1 2.540e-1 8.6706 2.434e-1 1.929e-1 3.3734 4.587e-1
2 9.032e-2 8.969e+0 4.330e-2 3.928e-2 2.6116 5.363e-2 2.826e-2 9.865e-1 9.425e-2
3 1.919e-2 3.627e+0 1.033e-2 9.198e-3 1.1702 1.224e-2 5.499e-3 3.050e-1 2.000e-2
4 3.467e-3 1.016e+0 2.150e-3 2.107e-3 4.421e-1 3.043e-3 7.221e-4 7.851e-2 3.949e-3
5 5.443e-4 2.668e-1 4.473e-4 4.752e-4 1.680e-1 7.519e-4 7.904e-5 1.882e-2 7.901e-4
EOC 2.48 1.60 2.39 2.27 1.42 2.08 2.81 1.87 2.30

5 Concluding remarks

In this work a new stabilized finite element method for the Oseen has been proposed and analyzed.
The method is based on the observation that, in order to obtain pressure-robust error estimates, the
stabilization term needs to be independent of the pressure. That is why the stabilizing term is built as
a penalization of the vorticity equation, where the pressure gradient is not present. This design has
allowed us to prove optimal, pressure-independent error estimates for the velocity. In particular, the
O(hk+ 1

2 ) error bound for ‖u − uh‖0,Ω, not available for the Galerkin method or the SUPG method
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Table 6: Example 4: velocity and pressure errors for all methods and different refinement levels for
σ = 1.

ref SV SV-SUPG SV-LSVS
L2(u) H1(u) L2(p) L2(u) H1(u) L2(p) L2(u) H1(u) L2(p)

1 4.284e-1 2.093e+1 3.066e-1 2.022e-1 6.3029 2.751e-1 1.624e-1 3.2283 4.747-1
2 6.847e-2 6.468e+0 4.734e-2 3.146e-2 1.9888 5.358e-2 2.399e-2 9.408e-1 9.650-2
3 1.382e-2 2.562e+0 9.569e-3 7.439e-3 9.080e-1 1.234e-2 4.255e-3 2.822e-1 2.036-2
4 2.729e-3 8.759e-1 2.161e-3 1.663e-3 3.854e-1 3.062e-3 5.264e-4 7.382e-2 3.970-3
5 4.487e-4 2.533e-1 4.561e-4 3.585e-4 1.550e-1 7.579e-4 5.662e-5 1.826e-2 7.907-4
EOC 2.47 1.59 2.35 2.28 1.34 2.13 2.87 1.87 2.31

when applied to inf-sup stable discretizations, and also only available so far for H1-conforming equal
order stabilized methods (at the price of a constant that depends on the regularity of the pressure).
From the numerical results we can extract the following conclusions:

� SV-LSVS works well and converges with an optimal order in any situation (Example 1-4); in the
extreme Example 1 it delivers the exact solution for every stabilization parameter;

� SV-SUPG converges always sub-optimally. In situations, where the convective force is close to
a gradient it can be less accurate than the plain SV method. However, for situations, where the
convective term is divergence-free, SV-SUPG delivers more accurate results on coarse meshes
than plain SV;

� SV-LSVS outperforms plain SV and SV-SUPG, in the most general Example 4, where the con-
vective term has a divergence-free and an irrotational part;

� the SV-LSVS has a robust behavior with respect to the stabilization parameter. For all the Ex-
amples 1–4, the same parameter δ0 = 0.006 was used. Instead, for SV-SUPG in Example 1 it
could be shown that the optimal parameter is δ0 = 0, while it is about δ0 ≈ 0.25 for Examples
2-4.
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