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ABSTRACT 
Most lidar processing algorithms, such as those 
included in EARLINET’s Single Calculus Chain, 
can be applied only to cloud-free atmospheric 
scenes. In this paper, we present a methodology for 
masking clouds in uncalibrated lidar signals. First, 
we construct a reference dataset based on manual 
inspection and then train a classifier to separate 
clouds and cloud-free regions. Here we present 
details of this approach together with an example 
cloud masks from an EARLINET station. 

1 INTRODUCTION 
Lidar systems have evolved into key observing 
tools of atmospheric aerosols, providing 
measurements of aerosol optical properties with 
high spatial and temporal resolution. In Europe, the 
European aerosol research lidar network 
(EARLINET) is allowing the study of aerosol 
vertical structure at a continental scale. Two major 
concerns, however, of such a distributed lidar 
networks is the homogeneity of the processed 
results and the ability to provide measurements in 
real-time. To tackle both issues, EARLINET is 
developing the Single Calculus Chain (SCC), a tool 
for automatic processing signals from 
heterogenous lidar systems [1].  

Most aerosol processing algorithms in the SCC can 
be only applied in cloud-free conditions. This is a 
crucial step, as even a small misinterpretation of 
clouds as aerosols, could have strong effect in the 
retrieved lidar products and hinder any further use 
of the data. In EARLINET, the process of 
identifying cloud-free regions is done separately at 
each lidar station before submitting data for 
processing in the SCC, but this procedure is 
manpower-intensive and unfit for real-time 
analysis. Therefore, an accurate, automatic cloud-
masking procedure is a necessary first step for 
constructing a fully automatic processing chain.  

In this paper, we outline a methodology for cloud-
masking based on uncalibrated lidar systems. We 
follow a supervised learning approach, trying to 
find the optimal discrimination parameters based 
on a reference cloud-masked dataset. The cloud 
masking procedure is developed for the SCC using 
data from several EARLINET lidar systems. In this 
paper, we present an example using the PollyXT 
lidar systems of the National Observatory of 
Athens [2]. In section 2 we outline a general 
supervised learning methodology for cloud-
masking and give an example application that is 
being tested for the SCC, while in section 3 we 
present specific results of this procedure. 

2 METHODOLOGY 
The aim of the methodology is to assign a cloud 
label to each lidar bin. The algorithm takes as input 
uncalibrated pre-processed lidar signals. We treat 
each lidar scene separately, assuming no 
knowledge of the instrument constant of the 
measuring system. This is a realistic assumption as 
the algorithm is designed for research lidar 
systems, that their parameters can change often. 
Being based on uncalibrated lidar signals, the 
results of the algorithm cannot be completely 
objective, and so they are not designed to be used 
for studying clouds. The aim instead is just to 
identify cloud-free regions suitable for the retrieval 
of aerosol properties. 

2.1 Supervised learning  
Supervised learning is separated in two phases 
(Fig. 1) [3]. In the training phase, a flexible 
classification algorithm is tuned to the specific 
problem of cloud masking based on a pre-classified 
reference dataset. The aim of this step is to find the 
optimal parameters to separate cloudy and cloud-
free bins. In the second phase, the trained classifier 
is used to classify new data i.e. create a cloud mask 
for new lidar observations.  
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Figure 1. Overview of the two phases of the 

classification procedure.  

Specifically, the first step of the training phase is 
feature extraction: instead of performing the 
classification using actual lidar data, each lidar bin 
is described by a set of parameter (features) that are 
selected to maximize the difference of aerosol and 
cloud regions. Such features could be, for example, 
the value of the backscattered signal, the slope in 
adjacent pixels, the variability of the signal in the 
region around the bin, etc. Second, we construct a 
reference dataset that contains a set of lidar scenes 
and a known cloud mask. The reference cloud 
mask can be created e.g. through manual inspection 
of lidar signals, or using ancillary collocated 
instruments like a cloud radar. Third, we use the 
reference dataset to tune (train) a classification 
algorithm to assign to each possible combination of 
features to the cloudy or non-cloudy categories. 
Seen in another way, the aim of this step is to 
separate the feature space in two sub-spaces, one 
assigned as cloudy and one as cloud-free. The 
surface that separates the two spaces is called the 
decision boundary of the classification. There are 
several well documented algorithms to find optimal 
decisions boundaries, depending on the number of 
features and the required stability [4]. Some of 
these algorithms can also give a probability that 
each new point belongs to one of the two classes. 
Finally, in practice the reference dataset is split in 
three parts: The first part, called the training 
dataset, is used to find the optimal decision 
boundary; the second part, called the validation 
dataset is used to evaluate the performance of each 

classification methods. Finally, a last part of the 
references dataset is used to quantify the 
performance of the chosen classifier. The end 
results of this process is a trained classifier i.e. a 
fixed procedure to assign each new set of features 
to one of the two classes, cloudy or non-cloudy. 

In the classification phase (Fig. 2, bottom), the 
algorithm is used to classify lidar data not involved 
in the training procedure. The feature extraction 
procedure is performed in an identical way as the 
training phase. The output of this phase is the new 
cloud mask and, depending on the used 
classification algorithm, the probability that each 
bin belongs to the cloud or non-cloud categories. 

2.2 Reference dataset 
We constructed a reference dataset using 8 
atmospheric scenes measured by PollyXT lidars. 
PollyXTs are autonomous, portable, multi-
wavelength lidar systems developed by the 
TROPOS institute in Leipzig, Germany. They are 
typically operated with a temporal resolution of 30s 
and a vertical resolution of 7.5m. For constructing 
the reference dataset, we use measurements from 
Leipzig (Germany), Athens (Greece), and 
Finokalia (Greece). The 6-hour-long scenes were 
selected to include a wide range of cloud types, 
from low-level water clouds to optically thin cirrus, 
and aerosol burdens, including desert dust 
intrusions. In this way, the classifier can be trained 
in a wide range of atmospheric scenarios, covering 
most situations encounter in European 
measurements sites. For each scene, the reference 
cloud mask was constructed using manually 
selected thresholds in the values of range-corrected 
signal and edge detection value. 

2.3 Features extraction 
The goal of feature extraction is to convert the 
uncalibrated, pre-processed, lidar signals to a set of 
features, appropriately selected to assist the 
classification procedure. To make the mask as less 
restrictive as possible, we used only the 1064nm 
elastic channel.  Regions with low signal-to-noise 
ratio are excluded from further analysis. The range-
corrected signals are first normalized, aiming to 
homogenize the data from different lidar systems. 
For the normalization, we select data between full 
overlap range and 12km, and use their median as a 
normalization factor. To exclude extreme values 
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from this region, we apply an iterative 2-sigma 
clipping procedure, i.e. rejecting data that are more 
than 2 standard deviations away from the mean 
value [5]. In this way, we roughly exclude clouds 
from the normalization dataset and make the 
normalization procedure more robust. 

For this demonstration, we perform the cloud 
masking using three features. First, we use the 
Sobel operator as a 2D edge detection filter. The 
Sobel operator is a very efficient filter for 
calculating the discrete gradient of the signal in 
both the time and vertical axis. To each bin, we 
assign the norm of the 2D gradient vector. Second, 
we estimate the standard deviation of the 
normalized signal for a box 5x5 bins centered 
around the bin, as cloudy regions are expected to 
have much larger variability than aerosol regions. 
Third, we estimate the ratio of minimum to 
maximum normalized value for a box 5x15 
centered around the bin. For cloudy regions, this 
ratio will have values close to zero, while in aerosol 
regions the value will be closer to 1. These three 
features were found helpful to discriminate cloudy 
from non-cloudy regions, but other features are 
also evaluated to further improve the procedure. 

2.4 Classification algorithm 
For the classification, we use a simple logistic 
regression classifier, which outputs a linear 
decision boundary and provides the probability that 
each bin belongs to one of the two classes. To 
prevent overfitting, we apply a L2 regularization 
constraint, i.e. we try to find the optimal decision 
boundary including an extra penalty factor for the 
square of the boundary coefficients [3]. The 
optimization problem is solved using stochastic 
gradient descent that is a very efficient algorithm 
for fitting linear classifiers [4].  

As a post-processing step, profiles classified as 
cloud free and having no signals at the full-overlap 
altitude are marked as “fog/low clouds”, that is 
used as a general category to mark cases were the 
laser beam is completely extinguished and a 
consequence not properly observed.  

3 RESULTS 
In this section, we present an example of the cloud 
masking procedure, applied to a complex lidar 
scene obtained in Cyprus using the PollyXT-NOA 

system. The top panel of Fig. 2 shows the logarithm 
of the range-corrected (RC) signal at 1064nm, 
while the bottom panel shows the constructed 
cloud mask. The scene covers the period from 6:00 
to 12:00 UTC during which the planetary boundary 
layer (PBL) is rising and around 10:00 UTC clouds 
start forming on its top. A lofted aerosol layer is 
locater around 3km a.g.l, while several cloud layers 
are observed initially above 8km but then down to 
4km. 

 
Figure 2. Example cloud mask applied to PollyXT-NOA 
measurements on 23d of March, 2015. (top panel) Log 
RC signal at 1064nm. (inset figure) Histogram of log 
RC signal; the vertical lines shown the min, median, 
and max values of the clipping procedure. (bottom 

panel) Produced cloud mask. 

The inset figure of Fig. 2 shows the histogram of 
log-RC values from 500m to 12km. The vertical 
dashed lines indicate the limits of the 2-sigma 
clipping procedure: only points between these 
values were used to calculate the median value 
used for normalization. Most cloud values have 
been excluded from the normalization making the 
procedure more robust.  

As seen at the bottom panel of Fig.2, the cloud-
masking algorithm can successfully detect most 
cloudy bins and separate the cloudy structures from 
the rest of the atmosphere. In the cases of low 
clouds, the regions marked as clouds are wider than 
the ones observed in the range-corrected signal. 
This is expected, as all features used in the 
classification take into account a region around 
each bin. Also, note that several bins at the edges 
of cirrus clouds are not classified consistently. This 
is also expected from a bin-based method, as such 
bins typically have characteristics similar to the 
ones observed within aerosol layers. 
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Figure 3. Time-height plots for the features used for 

the classification. (top panel): Sobel operator feature. 
(middle panel) standard deviation feature. (bottom 

panel): min/max feature.  

Fig. 3 presents time-height plots of the three 
features uses in the example. In the specific case, 
both the Sobel operator and the standard deviation 
feature seems to clearly highlight cloudy and non-
cloudy regions. The use of a combination of 
features, however, proves to make the 
classification more robust, and provide reliable 
cloud mask even in cases were simple thresholds in 
one parameter would fail.  

 
Figure 4. Log-probability that each bin is cloudy.  

Finally, Fig. 4 presents the predicted log 
probability that a pixel is cloudy. Using this 
information, the strictness of the algorithm output 
can be easily tuned, by changing the probability 
threshold of what is considered cloud.  

4 CONCLUSIONS 
We have presented an approach for assigning a 
cloud mask to uncalibrated lidar signals using a 

supervised training algorithm. We have also 
presented a set of features that seem to be effective 
in the classification procedure. However, several 
challenges remain to be solved. First, we need to 
study the effect of different spatial and temporal 
resolutions of the input lidar data in the quality of 
the cloud-mask. Seconds, we need to expand the 
reference dataset to include a broader set of 
atmospheric scenes observed by different lidar 
systems. Finally, we need to extend the approach to 
other wavelengths, making the use of the 
developed algorithm as broad as possible. 
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