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Self-assembled polymeric systems have played an important role as templates for nanofab-
rication; they offer nanotemplates with different morphologies and tunable sizes, are eas-
ily removed after reactions, and could be further modified with different functional groups
to enhance the interactions. Among the various self-assembled polymeric systems, block
copolymer supramolecular assemblies have received considerable attention because of
the inherent processing advantages. These supramolecular assemblies are formed by the
non-covalent interactions of one of the blocks of the block copolymer with a low molar-
mass additive. Selective extraction of the additive leads to porous membranes or nano-
objects which could then be used as templates for nanofabrication leading to a variety of
ordered organic/inorganic nanostructures. In this feature article, we present an over-view
of the recent developments in this area with a special focus on some examples from our
group.

� 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

The rapid growth of nanoscience and nanotechnology
has pushed the scale limits of modern functional devices
that demand materials at the nanometer scale. Controlling
the structure of these material at the nanometer scale and
assembling these nanomaterials into arrays and networks
in a controlled manner are the keys to new technologies.
The fabrication of arrays of nanomaterials, however, with
nanoscale precision remains a formidable task. Selective
positioning of nanomaterials is always challenging, and
special techniques are often needed to achieve this goal.
The traditional methods used to fabricate such periodic
arrays employs the top-down approaches like e-beam
partment of Textile
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lithography [1], nanoimprinting [2], focused-ion-beam
lithography [3]. The problem here is that direct writing is
a serial process and structuring of large areas takes very
long time and is very expensive [1–3]. Another important
aspect, a feature size less than 30 nm is hard to achieve
with the above-mentioned standard semiconductor lithog-
raphy techniques.

An alternative route to nanostructures and arrays is the
so-called ‘‘bottom-up” approach utilizing self-assembly of
organic and inorganic material at surfaces which can offer
advantages including experimental simplicity, the possibil-
ity of three-dimensional assembly and the potential for
low-cost mass fabrication. Block copolymers are known to
self-assemble at molecular scale into variety of nanoscale
structures such as lamellar, cylindrical, or spherical nanod-
omains (among other more complex morphologies) with
dimensions from a few nanometres to above 100 nm [4,5]
depending on molecular weight, segment size, and the
strength of interaction between the blocks, represented by
the Flory–Huggins interaction parameter,v. Significant pro-
gress has been achieved in controlling the orientation and
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long-range ordering of the block copolymer microdomains
both in bulk as well as in thin film. Moreover, the separation
and orientation of the domains are also influenced, espe-
cially in thin films, by surface–interfacial interactions,
kinetic aspects during preparation (non-equilibrium
structures) as well as by the interplay between structural
periodicity and film thickness. These self assembled
nanostructures are promising [6–12] for fabrication of
metal, magnetic, polymeric, semiconducting nanomaterial
different shapes as sphere, rods and tubes or their large scale
ordered arrays of high density (terabits per cm2) used
for electronic, electrochemical, optoelectronic, magnetic,
photonic, and biosensing device applications.

In recent years, it was demonstrated that a supramo-
lecular approach to block copolymer self-assembly is a
simple and powerful technique for fine tuning of the
block copolymer morphologies, and has been successfully
applied in bulk [13–16] and in thin films [17–21]. Block
copolymer supramolecular assembly (SMA) where a low
molar-mass additive molecule is attach to the side chains
of one of the block of the block copolymer by different
non-covalent interactions [15–27], also microphase
separate similar to block copolymer into arrays of micro-
domains, tens of nanometers in size [17,19]. These supra-
molecules offer advantages over the covalently linked
analogues, since different functionalities can be intro-
duced into the assemblies simply by substituting the
small molecules, there by avoiding the need to synthe-
size entirely new families of BCP based supramolecules
[28,29].

A number of tunable morphologies are readily accessi-
ble using a single BCP either by varying the stoichiometry
between the small molecules and BCPs or by redistributing
the small molecules between the two microdomains using
external stimulus, like heat [13], electric field [29]. Another
major advantage of SMA strategy is that the low molar-
mass additive can be removed easily from the SMA by
selective dissolution to obtain a nanoporous material
[17,19]. These nanopores and nanochannels are lined with
functional groups that are readily available for further
functionalization. The pioneering work on such materials
was done in the groups of Olli Ikkala and Gerrit ten Brinke
[15,30,31]. They demonstrated that such materials may
also exhibit hierarchical structures displaying structure-
within-structure pattern characterized by two length
scales.

Our group in past few years have also worked exten-
sively on block copolymer SMAs mostly with an aim to fab-
ricate polymer nanotemplates for further nanofabrication.
One of the systems widely studied by us consists of SMAs
formed by poly(styrene)-b-poly(4-vinylpyridine) (PS-b-
P4VP) and 2-(40-hydroxybenzeneazo) benzoic acid (HABA)
where P4VP(HABA) comb block forms cylindrical microdo-
mains surrounded by PS matrix [17]. This supramolecular
system shows the reversible switching of the orientation
of the microdoamin (for example: parallel cylinder to per-
pendicular cylinder) upon exposure to solvent vapours.
Selective extraction of HABA creates pores or polymeric
nano-objects which we used as templates for nanofabrica-
tion. In this feature article we focus on the progress made
in our group on such materials and the various approaches
adopted for utilizing the polymeric nanotemplates for the
nanofabrication.

2. Synthesis of block copolymer supramolecular
assemblies

For preparation of block copolymer supramolecular
assemblies, at least one of the blocks of the block
copolymer should contain suitable functionality which can
interact with the low-molecular weight additive through
non-covalent interactions. The most commonly used block
copolymers for such an approach are polystyrene-
block-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-
block-poly(ethylene oxide) (PS-b-PEO). The low-molecular
weight additives which have been extensively used
are 3-pentadecylphenol (PDP), dodecylbenzene sulfonic
acid (DBSA), and 2-(4

0
-hydroxybenzeneazo) benzoic acid

(HABA). However, in general, a range of low-molecular
weight additives with different functionality can be used
as long as they contain suitable functionality to form
supramolecular complexes with the block copolymer to
form a comb like block copolymer. The typical synthesis of
the supramolecular assemblies involves mixing of the
block copolymer and low-molecular weight additive in de-
sired ratio in a common solvent for several hours. Bulk sam-
ples are prepared by evaporating the solvent whereas thin
films on desired substrates are prepared by spin or dip
coating. A further solvent/thermal annealing step is neces-
sary for the long-range ordering of the self-assembled
structures.

If the low-molecular weight additive is sufficiently long,
the block copolymer supramolecular assemblies show
hierarchical self-assembly. In this case microphase separa-
tion occurs on two length scales, the larger length-scale
structure formed by the polymer blocks and the smaller
length-scale structure is formed by the comb block i.e.
the polymer block containing the low-molecular weight
additive. Such supramolecular comb-coil complexes have
been drawing significant interest recently due to their
potential use as functional materials in electrical, optical,
and other functionalities [15,29,32]. The self-organized
domains at multiple length scales offer switch-like
controls of material functionalities by the relevant order–
disorder or order–order transitions [15,30,33,34]. Ikkala
and co-workers have extensively studied such supramolec-
ular assemblies with hierarchical structures and have
reported a range of morphologies: lamellar-within-spheri-
cal, lamellar-within-cylinder, lamellar-within-lamellar,
cylinder-within-lamellar, and spherical-within-lamellar
structures [13,14]. The morphology tuning can be done
simply by varying the ratio of the block length and/or
by changing the molar ratio between the monomeric unit
of the functional block and the additive. The role of
molecular architecture of the block copolymer on the
microphase separation in such supramolecular assem-
blies have also been studied. Moreover, it has also been
shown that some novel morphologies could be formed
which generally are not observed for simple block
copolymers. Chen et al. and Nandan et al. have shown
the formation of square packed cylinders in the system
they studied [35,36].



Fig. 1. Schematic illustration for fabrication of functional nano objects using block copolymer supramolecular assembly (a) bulk sample with microphase
separated regions which are randomly ordered (b)macroscopically oriented sample after application of shear (c) individual cylinders composed from PS
core and P4VP brushes after removal of PDP [37a].
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3. Nanotemplates fromblock copolymer supramolecular
assemblies

The significant interest recently attracted by the block
copolymer supramolecular assemblies is largely due to
the fact that the removal of the low-molecular weight
additive from the bulk or thin film sample can readily gen-
erate polymeric nano-objects or nanoporous membranes.
The removal of the low-molecular weight additive is possi-
ble if they are bound to the block chain by weaker interac-
tions such as hydrogen bond. Moreover, since the walls of
the polymeric nano-objects or membranes are lined with
functional polymeric chains, they potentially could be used
as templates for further nanofabrication.

Fig. 1 illustrates a typical approach for producing func-
tional nano-objects from bulk samples of block copolymer
Fig. 2. AFM height image of PS-b-P4VP (PDP) block copolymer supramolecular a
thin section of the supramolecular bulk sample after extraction of PDP [37a].
supramolecular assemblies [31,37a]. A polystyrene-
block-poly(4-vinylpyridine) (PS-b-P4VP) was mixed with
a low-molecular weight additive, 3-pentdecylphenol
(PDP). The bulk sample formed from solution showed hex-
agonally packed PS cylinders in a matrix formed by
P4VP(PDP) comb blocks. The grain size of the hexagonally
packed PS cylinders were rather small in the as-prepared
sample. After applying shear, the long-range order of the
cylinders could be significantly improved and, hence, infi-
nitely long PS cylinders are also formed. In the next step
the sample is immersed in a PDP selective solvent such
as ethanol. The solvent washes out PDP from the supramo-
lecular assembly leaving behind individual PS cylinders.
The P4VP chains which are covalently bonded to PS blocks
collapse on the wall of the PS cylinders. Fig. 2(a and b)
shows representative AFM height images obtained on thin
ssembly (a) thin section of the supramolecular assembly bulk sample (b)



Fig. 4. (a) Light microscopy image from PS-P4VP(PDP)-filament showing
a thickness of about 300 lm (b) Structural characteristics of cylinder-
within-lamellae structure of PS-block-P4VP(PDP) [38].
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section of supramolecular assembly formed by PS-b-P4VP
(21–20 k) with PDP before and after extraction of PDP.
The AFM height image before PDP extraction shows hexag-
onally arranged PS cylinders in P4VP(PDP) matrix. After
extracting the PDP, the structure collapses leaving behind
isolated PS cylinders of nanometre diameters. These PS cyl-
inders have wall covered with collapsed P4VP chains.

A different approach for producing long isolated
polymeric nanofibres involved melt-spinning of PS-b-
P4VP(PDP) supramolecular assemblies [38]. Fig. 3 shows
the spinning device used for producing the SMA nanofi-
bres. Spinning was done at 120 �C. The fibres broke up if
the distance between the die and the winder was larger
than 50 cm. The filament seemed to break under its own
weight because of the low melt strength of the material.
Consequently, the winder was rearranged at a distance of
20 cm below the die to avoid fibres break-up. The take-
up velocity for winding was chosen in the same range as
the extrusion velocity. The maximum possible draw ratio
was not greater than two and the used take-up velocity
had to be adjusted carefully. Therefore, the process was
an extrusion process where only little elongational defor-
mation was possible but still macroscopically oriented fi-
bres were produced. The filaments, defined as oriented
fibres after the melt spinning process, were inspected by
light microscopy to study the large-scale alignment and
macroscopic appearance. Fig. 4(a) shows a light micro-
scopic image of the polymeric complex filament with a
diameter of about 300 lm. Apparently, the production of
filaments could be achieved with very smooth surfaces.
Macroscopically oriented filaments could therefore be ob-
tained by this procedure. The diameter of the filament is
controllable depending on the die diameter. This implicitly
controls the numbers of the nanofibres in the filament as is
illustrated in Fig. 4(b). The last step of the nanofibre pro-
duction is the selective dissolution of PDP in the P4VP/
PDP matrix. Fig. 5(a) shows AFM height image of PS nano-
fibres received through selective dissolution of the matrix
and precipitation of the filaments on a silicon substrate.
After evaporating the solvent, the PS nanofibres were stud-
ied using AFM (tapping mode). Fig. 5(a) shows that the
Fig. 3. Schematic drawing of piston type extrusion and spinning device
for producing supramolecular assembly nanofibers [37b].

M
A

nanofibres have lengths on the micron-scale. They can be
expected to be even larger before dissolution and precipi-
tation but they may break easily during the dissolution
process. This process demonstrates that it is possible to
produce anisotropic nanofibres with considerable lengths.
The sectional profile in Fig. 5(b) is used to determine the
diameter of the nanofibres. Fig. 5(c) shows a 3D-image of
the PS nanofibres, presenting smooth PS nanofibres macro-
scopically oriented with considerable lengths. Due to the
low contrast between PS and PVP/PDP matrix in AFM
images it was almost impossible to distinguish the phases
at very low magnification. By inspecting different adjacent
areas, fibres with lengths in the millimetre range have
been observed. The diameter of the PS nanofibres was
about 110 nm, slightly larger than that observed in the
P4VP/PDP matrix. This increase in diameter may be caused
by the presence of a P4VP layer around the PS nanofibres
due to the presence of chemical connectivity between PS
and P4VP (Fig. 5(d)). If the morphology of the supramolec-
ular assemblies is so chosen that the comb block formed
the minority component, then porous fibres can also be
fabricated. Ikkala and coworkers have shown that by elec-
trospinning, polymeric fibres of PS-b-P4VP(PDP) SMA can
be prepared in which P4VP(PDP) forms spherical microdo-
mains [39]. The PDP can then be washed to generate
porous polymer fibres which potentially could have appli-
cations as filters or in functional fabrics.



Fig. 5. (a) AFM images of PS nanofibers coated with P4VP layer prepared on Si-substrate (b) sectional profile and (c) 3D-image (d) schematic drawing of PS
nanowires with P4VP chains [38].
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Using similar procedures, polymeric nanoobjects such
as nanosheet and nanospheres can also be produced [40].
For nanosheet fabrication, lamellar morphology of supra-
molecular assemblies are needed. Fig. 6 shows AFM and
TEM images of PS-b-P4VP(PDPD) supramolecular assembly
with lamellar morphology before and after washing of PDP.
The microscopy images before PDP washing showed highly
oriented lamellar structure of PS and P4VP(PDP) lamellaes.
Washing of PDP leads to the collapse of P4VP chains on PS
layer which remains intact producing polymeric nano-
sheets. The AFM image in Fig. 6 shows such PS nanosheets
on a silicon substrate. The sheets lie parallel to each other
on the surface with a distance of about (55–60 nm) and an
average height of 14 nm. PS nanospheres have been fabri-
cated by Ikkala and co-workers using PS-b-P4VP(PDP) SMA
with PS spheres embedded in P4VP(PDP) matrix [41].

The thin films of supramolecular assemblies are poten-
tially more attractive as they could allow the fabrication of



Fig. 6. (a) AFM height image (b) surface profile of the ultrathin section of block copolymer supramolecular assembly on silicon wafer (c) TEM morphology of
the ultrathin section (contrast was obtained by staining the P4VP regions with OsO4) (d) AFM height image of the nanosheet after extraction of PDP [40].
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porous nanotemplates. However, the use of surfactants like
PDP as low-molecular weight additives in thin films is not
feasible since they preferable tend to migrate to the surface
of the films and hence the desired morphology could not
be obtained. We have shown that, in thin films, the use
of additives with functionalities across the molecule might
be more useful. In our group, we used HABA as the low-
molecular weight additive in thin films of supramolecular
assemblies for fabricating porous nanotemplates [17].
Fig. 7 shows a schematic illustration of the process adopted
in the present work. The PS-b-P4VP was mixed with HABA
in a stoichiometric ratio with respect to the 4VP unit in 1,4-
dioxane as the solvent medium. HABA, in this case, selec-
tively associates with the pyridine nitrogen of PS-b-P4VP
via hydrogen bonding and formed SMA (Fig. 7(a)). Thin
films of the SMA obtained by dip or spin-coating on a sili-
con substrate demonstrated vertically oriented hexagonal
cylindrical morphology (Fig. 7(c)). The cylindrical nanodo-
mains were formed by the P4VP + HABA complex sur-
rounded by the PS matrix. However, when the SMA was
annealed in the vapor of chloroform the cylindrical mor-
phology switched from perpendicular to parallel with re-
spect to the surface plane (Fig. 7(b)). Extraction of HABA
with a selective solvent resulted in a porous block copoly-
mer (PBC) film. Depending on the cylinder alignment we
obtain PBCs in two forms. The perpendicular cylinder
alignment resulted in a nanomembrane, denoted further
as PBC\, with a hexagonal lattice of hollow channels
(Fig. 7(e)). The SMA with the parallel cylinder alignment
was turned into PBC|| with a ‘‘fingerprint” surface
(Fig. 7(d)). Significantly, the walls of the nanochannels or
grooves were formed by the reactive P4VP brush. As
explained later when the PBC film was dipped into an
aqueous solution of pre-synthesized nanoparticles, the
solution diffused into the pores driven by capillary force
and preferential attraction of the nanoparticle to the
P4VP brushes on the wall (Fig. 7(f and g)). The PBC film
with the nanoparticles was then UV-cross-linked to stabi-
lize the template. Oxygen-plasma treatment or pyrolysis
of the film at 450 �C completely removed the block
copolymer film leaving behind nanowire (Fig. 7(i)) or
nanodot (Fig. 7(h)) arrays of the nanoparticles on the sili-
con substrate.

Fig. 8(a–c) show the atomic force microscopy (AFM)
topographic images of PS-b-P4VP(HABA) SMA films before
and after solvent annealing in vapors of different solvents.
It must be noted that the AFM images were obtained after
washing the SMAs with methanol, which selectively
washed out HABA leaving cylindrical cavities in the film.
The film directly deposited from 1,4-dioxane and washed
with methanol demonstrated pores of 8 ± 1 nm in diameter
which were a projection of cylindrical domains with per-
pendicular orientation, with a periodicity of 24.5 ± 1.5 nm
(Fig. 8(a)). The center-to-center distance analysis revealed
a relatively narrow distribution of spacing between chan-
nels as visualized by the fast Fourier transformation (FFT)
image (inset). However, when the SMA films, before meth-
anol washing, were annealed in the vapor of 1,4-dioxane,
the long-range order of the cylindrical microdomains in-
creased significantly (Fig. 8(b)). The FFT image showed
six sharp first order reflections, which clearly demon-
strated that the cylindrical P4VP(HABA) domains were
packed in a ordered hexagonal lattice at least over an area
of 2 � 2 lm2. Interestingly, when the SMA film solvent
casted from 1,4-dioxane solution was annealed in a satu-
rated vapor of chloroform, the cylindrical P4VP(HABA) do-
mains switched to parallel orientation with respect to the
surface. Fig. 8(c) shows the AFM image of SMA film, an-
nealed in chloroform and washed with methanol, clearly
demonstrating the parallel cylindrical channels with a cen-
ter-to-center distance of 30 ± 1.5 nm. This re-orientation of
the cylinders occurring in SMA is reversible, relatively fast,
and can be repeated several times for films that are not
rinsed [17].
4. Fabrication of nanomaterials

The templates based on the supramolecular assembly of
block copolymer both in bulk and thin film discussed in the
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Fig. 7. Schematic illustration of the preparation of block copolymer nanotemplate using supramolecular assembly of PS-b-P4VP and HABA for fabrication of
inorganic nanodots and nanowire arrays (a) Scheme showing SMA formation through hydrogen bonding between the P4VP block of PS-b-P4VP copolymer
and HABA. Thin film of PS-b-P4VP(HABA) SMA annealed in (b) chloroform and (c) 1,4-dioxane. (d and e) Rinsing the SMA thin films in methanol washes
away HABA leaving cylindrical channels/pores, in the PS matrix, whose walls are lined with collapsed P4VP chains. (f and g) After dipping the SMA
nanotemplates into aqueous solution of nanoparticles. (h and i) The polymer is removed by oxygen plasma etching or by pyrolysis at 450 �C leaving
inorganic nanowires and nanodots on the substrate surface [49].
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last section were further used for a variety of nanofabrica-
tion processes. The nanofibers produced using supramolec-
ular assembly between PS-b-P4VP and PDP after applying
shear flow can be further used to fabricate metallic and



Fig. 8. AFM height images of the SMA thin film obtained after HABA extraction. (a) Dip-coated SMA films from 1,4-dioxane solution. (b) After annealing in
1,4-dioxane vapor. (c) After annealing in chloroform vapor [49].

Fig. 9. Schematic diagram of the metallization route starting from the polymeric nanofibers fabricated using supramolecular assembly between PS-b-P4VP
and PDP (a) reduction and complexation of Pd ions with P4VP on Si-substrate. (b) Adsorption of CdSe nanoparticles on P4VP [37a].
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Fig. 10. SEM image of (a) Pd nanowires (diameter of 60 nm) and (b) CdSe nanowires (90 nm) fabricated from block copolymer supramolecular assembly
[37a].
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semiconducting nanowires [37a] of several lm length
according to the scheme depicted in Fig. 9. For example
Metallic Pd nanowires with diameter of 60 nm and several
lm in length have been successfully synthesized by
reduction of Pd(CH3COO)2 deposited on block copolymer
nanofiber surface with (CH3)2NBH2 (Fig. 10(a)). Similarly
semiconductor nanowires of CdSe are fabricated by
adsorption of CdSe nanoparticles (size approx. 2 nm) onto
35 nm nanofibers to produce nanowires of 80 nm in width
(Fig. 10(b)). Ikkala et al. [41,42] fabricated hollow inorganic
nanotubes and nanospheres of different material like clay,
Fig. 11. Schematic diagram for the decoration of the ultrathin microtomed bloc
alumina using block copolymer template from supramo-
lecular assembly as scaffold material.

Ultrathin microtomed films of 40–50 nm prepared from
bulk sample and oriented under large amplitude oscilla-
tory shear (LAOS) can also be further used for nanofabrica-
tion. Fig. 11 depicts the decoration of the ultrathin
microtomed film with Pd metal nanoparticles which selec-
tively deposited on one of the block copolymer microdo-
main. This decoration of the block copolymer ultrathin
film resulted in the nano-scale alignment of metal nano-
cluster with a narrow size distribution within block
k copolymer supramolecular thin film with Pd nanoparticle [37b].
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copolymer ultrathin films. Fig. 12 shows the AFM height
image of the ultra thin microtomed block copolymer thin
film with its section analysis. Sectional analysis of AFM
measurements shows phase segregated nanodomains
ranging in size from 120 to 140 nm in width, with an as-
pect of height approximately 30 nm. From the AFM image
it can be concluded that the nanosheets microdomains are
maintained during the reduction and solvent evaporation
process where as the Pd(II) incorporated in the P4VP phase
does not perturb the sheets microdomains structure.

Thin films fabricated using supramolecular assembly of
PS-b-P4VP and HABA discussed earlier have been used for
variety of different nanofabrication. High density arrays of
ordered and aligned polyaniline nanorods with 10 nm
diameter have been successfully fabricated on transparent
ITO substrate via electropolymerization (Fig. 13). The
Fig. 12. (a) AFM phase image shows diffusion of Pd ions

Fig. 13. Schematic presentation for fabrication of polyaniline na
ordered arrays of polyaniline nanorods (Fig. 14(a and b))
fabricated in this way exhibit excellent electrochemical
properties with an electrochemical capacitance value of
3407 Fg�1 [11]. Recently, ten Brinke et al. [43] reported
the chemical synthesis of polypyrrole nanostructured thin
film from PS-b-P4VP(PDP) supramolecular assembly.

Also in an electrochemical process, Nickel was intro-
duced into the perpendicular cylindrical channels of the
SMA nanotemplate in galvanostatic mode or by pulse plat-
ing [17a]. Fig. 15 depicts an AFM height image of the nickel
dots, corresponding Power Spectral Density and Fast
Fourier Transformation of the structure after the polymer
template has been removed. However, keeping the poly-
mer film on the substrate after deposition has additional
benefits in this example. Investigation of the oxidation
state of the nickel rods with X-ray absorption spectroscopy
into P4VP phase (b) section profile along the line.

norods using block copolymer nonporous template [11].
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Fig. 15. Ni dots electrodeposited throughout 45 nm thick PS-PVP nanotemplate, lateral scale 1 � 1 lm2: (a) topography image, z scale 30 nm, (b) power
spectrum density, the main peak (24 nm) corresponds to the SMA periodicity (inset, FFT image of (a) showing perfect hexagonal ordering of Ni dots).
Occasional lacunas appear due to the inhomogeneity of electrodeposition [17a].

Fig. 14. AFM height images of (a) block copolymer nanotemplate (b) polyaniline nanorods. The total scale bar is 1 lm [11].
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and X-ray photoelectron spectroscopy at the Ni L edges
give evidence that the Ni rods were metallic despite their
preparation under ambient conditions as no hints for NiO
complexes were found inside the particles. This indicates
that the remaining polymer film protects Ni nanoparticles
against oxidation [44].

The SMA templates could also be used for patterning
polymeric materials which cannot be electropolymerized.
Under the direction of interpolymer hydrogen bonding
and capillary action of nanopores, SMA templates were
properly filled with phenolic resin precursor, followed by
curing and pyrolysis at middle temperature to remove
the nanotemplate. As a result, polymer nanodot arrays
(see Fig. 16) were obtained with spacing below 30 nm [45].

When additional process steps are added, new struc-
tures can be obtained from the templates. For example sil-
ica nanodots, which were prepared by pyrolysis of a SMA
template loaded with a precursor species, were used to
guide the dewetting of a phenolic resin precursor thin film.
Curing and calcination of the phenolic precursor, followed
by etching of the silica arrays, results in large area carbon
nanoring arrays (Fig. 17) with a diameter as small as
25 nm [46]. Ikkala et al. [47] reported the fabrication of
porous functional material with a narrow distribution of
pore sizes, high density of pores, large surface area per vol-
ume unit, and selective absorption properties using tem-
plates of block copolymer and phenolic resin.

Optically active SMA nanotemplates were also devel-
oped. For this, two different techniques are used for func-
tionalization of PS-b-P4VP based nanotemplates [48].
Either a luminescent additive (e.g. 1-pyrenemethanol –
PyM) is incorporated into the SMA instead of HABA (direct
funtionalization). Compared to a thin film consisting of
PyM and carboxy-terminated polystyrene, the PS-b-
P4VP(PyM) complex shows greatly reduced eximer emis-
sion in the PL spectra (Fig. 18). For the second approach,



Fig. 17. AFM images of carbon nanoring arrays on a silicon wafer after removing the silicate nanodot template. Left: height image. Right: phase image;
lateral scale 1 � 1 lm [46].

Fig. 18. Normalized photoluminescent emission of 30-nm films made of:
PyMþPSCOOH (solid), PS-b-P4VP(PyM) (from toluene) without annealing
(dash) and after annealing (dot). Excitation wavelength was 345 nm [48].

Fig. 16. AFM images of highly ordered polymeric nanodots arrays from nanoporous thin film after pyrolysis. (a) height image, (b) phase image. Lateral scale
1500 � 1500 nm. (c) Enlarged height image [45].
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so called post-functionalization, washed and UV-cross-
linked nanotemplates developed from PS-b-P4VP(HABA)
are impregnated with a dilute solution of a dye (rhodamine
6G) in methanol or 1,4-dioxane. Absorption and PL spectra
shown in Fig. 19 give evidence, that the optical properties
in post-functionalization are rather governed by solvent
and agglomeration effects than by the properties of the
template.

Similar to the post-functionalization of the nanotem-
plate with dye molecules, several other materials can be
incorporated into the porous structure of the washed
SMA templates. A simple route to fabricate highly dense
arrays of palladium nanodots and nanowires with sub-
30 nm periodicity was presented by the direct deposition
of pre-manufactured palladium nanoparticles from aque-
ous solution. The metal particles selectively migrate in



Fig. 19. (a) UV–vis absorption and PL emission, and (b) normalized spectra of 50-nm films prepared via soaking of porous crosslinked nanotemplates in 1,4-
dioxane (dash) and methanol (solid) solutions of R6G [48].
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the pores mainly due to their preferential attraction to the
P4VP block covering the pore wall. The polymer template
was then removed by oxygen plasma etching or pyrolysis
in air resulting in palladium nanostructures whose large
scale morphology mirror that of the original template
(Fig. 20). The method adopted is general and versatile so
Fig. 20. Nanotemplates after the deposition of palladium nanoparticles from sol
with perpendicular orientation. (b and d) AFM height and SEM image, respective
observed in the AFM images since they were present inside the pores/channels
that it could be easily extended for patterning a variety
of metallic materials into dot and wire arrays [49].

Comparable to classic lithography, developed SMA
template structures can be transferred into the underlying
substrate by Reactive Ion Etching [50]. Fig. 21 shows
cross-sectional transmission electron micrograph of a
ution. (a and c) AFM height and HRSEM images, respectively, of template
ly, of the parallel oriented sample. The palladium nanoparticles were not
[49].



Fig. 21. TEM micrographs of cross-sectional specimens of patterned Si wafers: (a) over-view; (b) details [50].
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silicon wafer, which was homogeneously patterned over
large areas, as obvious from Fig. 21(a). The period of about
26 nm is in line with that of the used SMA template. A de-
tailed view (Fig. 21(b)) reveals that the indentations have a
depth of about 10 nm. No amorphous silica layer covering
the Si is present. The low aspect ratio of the produced
structures can be attributed to the nearly complete con-
sumption of the polymer template during the etch step.

One possible method to reinforce the polymer against
etching is to convert the polymer into a carbonized nano-
structured thin films involving ion beam treatment. During
this process, the film thickness is reduced by approxi-
mately 50%, but it retains hexagonal nanomorphology
[51]. The films are mechanically robust, stable at high tem-
peratures and well suited for applications as ultrafiltration
membranes, quantum dot or single molecule supports,
masks for nanolithography. By superimposing two carbon-
ized thin films, rotation moiré patterns are observed
(Fig. 22) [52]. Periodic hexagonal moiré superstructures
appear when the films possessing long-range order are
superimposed at small misorientation angles while over-
lapping films misoriented by angles close to 30� generate
aperiodic quasi-crystal-like superstructures with 5-fold
Fig. 22. TEM image of stacked carbonized nanotemplate films showing the
boundary of one of the single- and the double-layer zones. A few moiré
fringes are designated with a dashed white line for eye-guiding; numbers
indicate the number of the layers in the corresponding zones [51].
symmetries [52]. Especially the latter are interesting, as
quasi-crystal structures at this length scale cannot be ob-
tained by other methods.
M

5. Summary and outlook

The work done over last few years on block copolymer
SMAs have shown tremendous potential of these materials
in nanofabrication. Moreover, investigation on the funda-
mental aspects of microphase separation in these SMAs
has further added to the already existing knowledge about
the complex nature of block copolymer self-assembly in
thin films. However, block copolymer SMAs are still an
emerging area of research and recently several other re-
search groups have started focusing on block copolymer
SMAs. However, a number of fundamental and technolog-
ical aspects of block copolymer SMAs still have to be
solved.

The cylindrical microdomains in the SMA were shown
to switch their orientation depending on the annealing sol-
vent and a plausible mechanism was also discussed. A bet-
ter understanding of the switching mechanism should be
still obtained using in situ GISAXS during exposure of the
SMA thin films to solvent vapors. Such studies are expected
to clearly resolve the pathway for the switching of cylinder
orientation by providing information about the transient
structures. The long-range order of the structures is very
important especially for the nano-patterned structures to
be ultimately incorporated in functional devices and sev-
eral groups are currently working towards developing
methods for increasing the long-range order in these SMAs.
Our work so far has mostly involved HABA as the low-
molecular weight additive, but a number of other low
molecular additive should be available in order to synthe-
size SMAs with a range of different properties. The recent
work of Mezzenga and co-workers [53] and Xu and co-
workers [54,55] where they incorporated semiconducting
low-molecular weight additive/nanoparticles in the block
copolymers demonstrates the future potential of the SMA
approach. Furthermore, we have shown that the SMA tem-
plates could be extremely useful for fabricating conducting
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polymer and magnetic nanorods by electrochemical meth-
ods. Further work needs to be done for fabrication of such
materials with a focus on optimization of the fabrication
procedures, tuning of size, spacing and aspect ratio of the
nanostructures, extending the approach to fabricate
variety of conducting and magnetic nanomaterials, and
property evaluation of such materials. The porous nano-
templates obtained from SMAs are also expected to be
excellent candidates for use in membrane application.
Supramolecular assemblies of block copolymers are thus
still challenging systems with promising perspectives for
fabrication of nanomaterials taking also the fascinating
advances of block copolymer chemistry into account.
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