This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Krejčí, PavelRocca, ElisabettaSprekels, Jürgen2022-07-052022-07-052021https://oa.tib.eu/renate/handle/123456789/9560https://doi.org/10.34657/8598We propose a diffuse interface model to describe tumor as a multicomponent deformable porous medium. We include mechanical effects in the model by coupling the mass balance equations for the tumor species and the nutrient dynamics to a mechanical equilibrium equation with phase-dependent elasticity coefficients. The resulting PDE system couples two Cahn--Hilliard type equations for the tumor phase and the healthy phase with a PDE linking the evolution of the interstitial fluid to the pressure of the system, a reaction-diffusion type equation for the nutrient proportion, and a quasistatic momentum balance. We prove here that the corresponding initial-boundary value problem has a solution in appropriate function spaces.eng510Tumor modelporous mediumdiffuse interface modelCahn--Hilliard equationreaction-diffusion equationAnalysis of a tumor model as a multicomponent deformable porous mediumReport22 S.