This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Kroshnin, AlexeySpokoiny, VladimirSuvorikova, Alexandra2022-06-302022-06-302020https://oa.tib.eu/renate/handle/123456789/9438https://doi.org/10.34657/8476In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a Fréchet mean of some distribution $P$ supported on a subspace of positive semi-definite $d$-dimensional Hermitian operators $H_+(d)$. We allow a barycenter to be constrained to some affine subspace of $H_+(d)$, and we provide conditions ensuring its existence and uniqueness. We also investigate convergence and concentration properties of an empirical counterpart of $Q_*$ in both Frobenius norm and Bures--Wasserstein distance, and explain, how the obtained results are connected to optimal transportation theory and can be applied to statistical inference in quantum mechanics.eng510Bures-Wasserstein barycenterscentral limit theoremoptimal transportStatistical inference for Bures--Wasserstein barycentersReport37 S.