This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Carstensen, CarstenMerdon, ChristianNeumann, Johannes2016-03-242019-06-2820130946-8633https://doi.org/10.34657/2026https://oa.tib.eu/renate/handle/123456789/1624Whenever numerical algorithms are employed for a reliable computational forecast, they need to allow for an error control in the final quantity of interest. The discretisation error control is of some particular importance in computational PDEs (CPDEs) where guaranteed upper error bounds (GUB) are of vital relevance. After a quick overview over energy norm error control in second-order elliptic PDEs, this paper focuses on three particular aspects. First, the variational crimes from a nonconforming finite element discretisation and guaranteed error bounds in the discrete norm with improved postprocessing of the GUB. Second, the reliable approximation of the discretisation error on curved boundaries and, finally, the reliable bounds of the error with respect to some goal-functional, namely, the error in the approximation of the directional derivative at a given pointapplication/pdfeng510Guaranteed error controlequilibration error estimatorsPoisson model problemconforming finite element methodsCrouzeix-Raviart nonconforming finite element methodscurved boundariesguaranteed goal-oriented error control.Aspects of quaranteed error control in CPDEsReport