CC BY 4.0 UnportedVirtanen, PauliGommers, RalfOliphant, Travis E.Haberland, MattReddy, TylerCournapeau, DavidBurovski, EvgeniPeterson, PearuWeckesser, WarrenBright, Jonathanvan der Walt, Stéfan J.Brett, MatthewWilson, JoshuaMillman, K. JarrodMayorov, NikolayNelson, Andrew R. J.Jones, EricKern, RobertLarson, EricCarey, C JPolat, İlhanFeng, YuMoore, Eric W.VanderPlas, JakeLaxalde, DenisPerktold, JosefCimrman, RobertHenriksen, IanQuintero, E. A.Harris, Charles R.Archibald, Anne M.Ribeiro, Antônio H.Pedregosa, Fabianvan Mulbregt, PaulVijaykumar, AdityaBardelli, Alessandro PietroRothberg, AlexHilboll, AndreasKloeckner, AndreasScopatz, AnthonyLee, AntonyRokem, ArielWoods, C. NathanFulton, ChadMasson, CharlesHäggström, ChristianFitzgerald, ClarkNicholson, David A.Hagen, David R.Pasechnik, Dmitrii V.Olivetti, EmanueleMartin, EricWieser, EricSilva, FabriceLenders, FelixWilhelm, FlorianYoung, G.Price, Gavin A.Ingold, Gert-LudwigAllen, Gregory E.Lee, Gregory R.Audren, HervéProbst, IrvinDietrich, Jörg P.Silterra, JacobWebber, James TSlavič, JankoNothman, JoelBuchner, JohannesKulick, JohannesSchönberger, Johannes L.de Miranda Cardoso, José ViníciusReimer, JoschaHarrington, JosephRodríguez, Juan Luis CanoNunez-Iglesias, JuanKuczynski, JustinTritz, KevinThoma, MartinNewville, MatthewKümmerer, MatthiasBolingbroke, MaximilianTartre, MichaelPak, MikhailSmith, Nathaniel J.Nowaczyk, NikolaiShebanov, NikolayPavlyk, OleksandrBrodtkorb, Per A.Lee, PerryMcGibbon, Robert T.Feldbauer, RomanLewis, SamTygier, SamSievert, ScottVigna, SebastianoPeterson, StefanMore, SurhudPudlik, TadeuszOshima, TakuyaPingel, Thomas J.Robitaille, Thomas P.Spura, ThomasJones, Thouis R.Cera, TimLeslie, TimZito, TizianoKrauss, TomUpadhyay, UtkarshHalchenko, Yaroslav O.Vázquez-Baeza, Yoshiki2025-02-262025-02-262020https://oa.tib.eu/renate/handle/123456789/18576https://doi.org/10.34657/17595SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.enghttps://creativecommons.org/licenses/by/4.0570610AlgorithmsComputational BiologyComputer SimulationHistory, 20th CenturyHistory, 21st CenturyLinear ModelsModels, BiologicalNonlinear DynamicsProgramming LanguagesSignal Processing, Computer-AssistedSoftwarealgorithmarticlehumanhuman experimentbiological modelbiologycomputer languagecomputer simulationhistorynonlinear systemproceduressignal processingsoftwarestatistical modelSciPy 1.0: fundamental algorithms for scientific computing in PythonArticle