This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Rossi, LucaTellini, AndreaValdinoci, Enrico2019-06-2820152198-5855https://doi.org/10.34657/3353https://oa.tib.eu/renate/handle/123456789/3340In this paper we consider a reaction-diffusion equation of Fisher-KPP type inside an infinite cylindrical domain in RN+1, coupled with a reaction-diffusion equation on the boundary of the domain, where potentially fast diffusion is allowed. We will study the existence of an asymptotic speed of propagation for solutions of the Cauchy problem associated with such system, as well as the dependence of this speed on the diffusivity at the boundary and the amplitude of the cylinder. When N = 1 the domain reduces to a strip between two straight lines. This models the effect of two roads with fast diffusion on a strip-shaped field bounded by them.application/pdfeng510KPP equationsreaction-diffusion systemsdifferent spatial dimensionsasymptotic speed of spreadingThe effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundaryReport