This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Cánovas, Maria JosefaGisbert, María JesúsHenrion, RenéParra, Juan2022-06-232022-06-232019https://oa.tib.eu/renate/handle/123456789/9215https://doi.org/10.34657/8253The paper is focussed on the Lipschitz lower semicontinuity of the feasible set mapping for linear (finite and infinite) inequality systems in three different perturbation frameworks: full, right-hand side and left-hand side perturbations. Inspired by [14], we introduce the Lipschitz lower semicontinuity-star as an intermediate notion between the Lipschitz lower semicontinuity and the well-known Aubin property. We provide explicit point-based formulae for the moduli (best constants) of all three Lipschitz properties in all three perturbation settings.eng510Variational analysisLipschitz lower semicontinuityLipschitz modulusAubin propertyfeasible set mappinglinear programmingLipschitz lower semicontinuity moduli for linear inequality systemsReport21 S.