This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Lamacz, AgnesNeukamm, StefanOtto, Felix2016-03-242019-06-2820130946-8633https://doi.org/10.34657/2682https://oa.tib.eu/renate/handle/123456789/3237We study the corrector equation in stochastic homogenization for a simplified Bernoulli percolation model on Zd, d > 2. The model is obtained from the classical {0,1}-Bernoulli bond percolation by conditioning all bonds parallel to the first coordinate direction to be open. As a main result we prove (in fact for a slightly more general model) that stationary correctors exist and that all finite moments of the corrector are bounded. This extends a previous result in [8], where uniformly elliptic conductances are treated, to the degenerate case. Our argument is based on estimates on the gradient of the elliptic Green's function.application/pdfeng510Stochastic homogenizationpercolationcorrector equationquantitative resultsPerkolationstheorieMoment bounds for the corrector in stochastic homogenization of a percolation modelReport