Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Bartels, SörenMielke, AlexanderRoubíček, Thomáš2016-03-242019-06-2820100946-8633https://doi.org/10.34657/3051https://oa.tib.eu/renate/handle/123456789/2593The quasistatic rate-independent evolution of the Prager--Ziegler-type model of linearized plasticity with hardening is shown to converge to the rate-independent evolution of the Prandtl--Reuss elastic/perfectly plastic model. Based on the concept of energetic solutions we study the convergence of the solutions in the limit for hardening coefficients converging to 0 by using the abstract method of Gamma-convergence for rate-independent systems. An unconditionally convergent numerical scheme is devised and 2D and 3D numerical experiments are presented. A two-sided energy inequality is a posteriori verified to document experimental convergence rates.application/pdfeng510Rate-independent plasticityhardeningPrandtl-Reuss elastic/perfectly plastic modelenergetic solutionconvergencefinite elementsQuasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximationReport