This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Bacho, ArasEmmrich, EtienneMielke, Alexander2018-07-312019-06-2820182198-5855https://doi.org/10.34657/1969https://oa.tib.eu/renate/handle/123456789/1721We consider the initial-value problem for the perturbed gradient flows, where a differential inclusion is formulated in terms of a subdifferential of an energy functional, a subdifferential of a dissipation potential and a more general perturbation, which is assumed to be continuous and to satisfy a suitable growth condition. Under additional assumptions on the dissipation potential and the energy functional, existence of strong solutions is shown by proving convergence of a semi-implicit discretization scheme with a variational approximation technique.application/pdfeng510Doubly nonlinear equationsdifferential inclusionsgeneralized gradient flowsperturbed gradient flowsevolutionary Gamma convergencehomogenizationreaction-diffusion systemsAn existence result and evolutionary [Gamma]-convergence for perturbed gradient systemsReport