This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Ivanov, Anatoli F.Trofimchuck, Sergei I.2019-06-2820141864-7596https://doi.org/10.34657/2821https://oa.tib.eu/renate/handle/123456789/2944Several aspects of global dynamics and the existence of periodic solutions are studied for the scalar differential delay equation x′(t)=a(t)f(x([t−K])), where f(x) is a continuous negative feedback function, x⋅f(x)<0x≠0,0≤a(t) is continuous ω-periodic, [⋅] is the integer part function, and the integer K≥0 is the delay. The case of integer period ω allows for a reduction to finite-dimensional difference equations. The dynamics of the latter are studied in terms of corresponding discrete maps, including the partial case of interval maps (K=0).application/pdfeng510Periodic differentiall delay equationsdiscretizationsdifference equationsperiodic solutions and their stability/instabilityglobal dynamicsreduction to discrete and one-dimensional mapsinterval mapsOn periodic solutions and global dynamics in a periodic differential delay equationReport