This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Eigel, MartinMüller, Rüdiger2016-12-132019-06-2820152198-5855https://doi.org/10.34657/1864https://oa.tib.eu/renate/handle/123456789/1613We consider a system of two coupled elliptic equations, one defined on a bulk domain and the other one on the boundary surface. Problems of this kind of problem are relevant for applications in engineering, chemistry and in biology like e.g. biological signal transduction. For the a posteriori error control of the coupled system, a residual error estimator is derived which takes into account the approximation errors due to the finite element discretisation in space as well as the polyhedral approximation of the surface. An adaptive refinement algorithm controls the overall error. Numerical experiments illustrate the performance of the a posteriori error estimator and the proposed adaptive algorithm with several benchmark examples.application/pdfeng510Finite element methoda posteriorierror estimatoradaptive algorithmsurface finite elementsbulk-surface elliptic equationsA posteriori error control for stationary coupled bulk-surface equationsReport