Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dipierro, SerenaNovaga, MatteoValdinoci, Enrico2016-12-132019-06-2820162198-5855https://doi.org/10.34657/3107https://oa.tib.eu/renate/handle/123456789/1676We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus extending a result previously known only for global minimizers. We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.application/pdfeng510Otha–Kawasaki functionallong-range interactionssymmetry resultscritical pointRigidity of critical points for a nonlocal Ohta-Kawasaki energyReport