This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Lovejoy, JeremyOsburn, Robert2018-01-252019-06-2820171864-7596https://doi.org/10.34657/3322https://oa.tib.eu/renate/handle/123456789/2840Using a result of Takata, we prove a formula for the colored Jones polynomial of the double twist knots K(−m,−p) and K(−m,p) where m and p are positive integers. In the (−m,−p) case, this leads to new families of q-hypergeometric series generalizing the Kontsevich-Zagier series. Comparing with the cyclotomic expansion of the colored Jones polynomials of K(m,p) gives a generalization of a duality at roots of unity between the Kontsevich-Zagier function and the generating function for strongly unimodal sequences.application/pdfeng510double twist knotscolored Jones polynomialdualityThe colored Jones polynomial and Kontsevich-Zagier series for double twist knotsReport