This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Dipierro, SerenaSoave, NicolaValdinoci, Enrico2016-12-132019-06-2820152198-5855https://doi.org/10.34657/2846https://oa.tib.eu/renate/handle/123456789/3375We study reaction-diffusion equations in cylinders with possibly nonlinear diffusion and possibly nonlinear Neumann boundary conditions. We provide a geometric Poincare-type inequality and classification results for stable solutions, and we apply them to the study of an associated nonlocal problem. We also establish a counterexample in the corresponding framework for the fractional Laplacian.application/pdfeng510Stabilitysymmetry resultsclassification of solutionreaction-diffusion equationsnonlocal equationsOn stable solutions of boundary reaction-diffusion equations and applications to nonlocal problems with Neumann dataReport