This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Gekhtman, M.Shapiro, M.Vainshtein, A.2019-06-2820111864-7596https://doi.org/10.34657/2102https://oa.tib.eu/renate/handle/123456789/1687We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on G corresponds to a cluster structure in O(G). We prove a reduction theorem explaining how different parts of the conjecture are related to each other. The conjecture is established for SLn, n < 5, and for any G in the case of the standard Poisson- Lie structure.application/pdfeng510Poisson-Lie groupcluster algebraBelavin-Drinfeld tripleCluster structures on simple complex Lie groups and the Belavin-Drinfeld classificationReport