This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Case, MichaelErvin, V.J.Linke, A.Rebholz, L.G.Wilson, N.E.2016-03-242019-06-2820100946-8633https://doi.org/10.34657/3248https://oa.tib.eu/renate/handle/123456789/2275We study extensions of an earlier developed energy and helicity preserving scheme for the 3D Navier-Stokes equations and apply them to a more general class of problems. The scheme is studied together with stabilizations of grad-div type in order to mitigate the effect of the Bernoulli pressure error on the velocity error. We prove stability, convergence, discuss conservation properties, and present numerical experiments that demonstrate the advantages of the schemeapplication/pdfeng510incompressible Navier-Stokes equationsfinite element methodsgrad-div stabilizationhelicity conservationStable computing with an enhanced physics based scheme for the 3d Navier-Stokes equationsReport