This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Glitzky, AnnegretHünlich, Rolf2016-03-242019-06-2820060946-8633https://doi.org/10.34657/3241https://oa.tib.eu/renate/handle/123456789/1824We discuss a stationary energy model from semiconductor modelling. We accept the more realistic assumption that the continuity equations for electrons and holes have to be considered only in a subdomain $Omega_0$ of the domain of definition $Omega$ of the energy balance equation and of the Poisson equation. Here $Omega_0$ corresponds to the region of semiconducting material, $OmegasetminusOmega_0$ represents passive layers. Metals serving as contacts are modelled by Dirichlet boundary conditions. We prove a local existence and uniqueness result for the two-dimensional stationary energy model. For this purpose we derive a $W^1,p$-regularity result for solutions of systems of elliptic equations with different regions of definition and use the Implicit Function Theorem.application/pdfeng510Energy modelsmasscharge and energy transport in heterostructuresstrongly coupled elliptic systemsmixed boundary conditionsImplicit Function Theoremexistenceuniquenessregularity.Stationary solutions to an energy model for semiconductor devices where the equations are defined on different domainsReport