This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Muntean, AdrianReichelt, Sina2016-12-152019-06-2820162198-5855https://doi.org/10.34657/2195https://oa.tib.eu/renate/handle/123456789/3193The present work deals with the derivation of corrector estimates for the two-scale homogenization of a thermo-diffusion model with weak thermal coupling posed in a heterogeneous medium endowed with periodically arranged high-contrast microstructures. The terminology weak thermal coupling refers here to the variable scaling in terms of the small homogenization parameter " of the heat conduction diffusion interaction terms, while the high-contrast is thought particularly in terms of the heat conduction properties of the composite material. As main target, we justify the first-order terms of the multiscale asymptotic expansions in the presence of coupled fluxes, induced by the joint contribution of Sorret and Dufour-like effects. The contrasting heat conduction combined with cross coupling lead to the main mathematical difficulty in the system. Our approach relies on the method of periodic unfolding combined with -independent estimates for the thermal and concentration fields and for their coupled fluxes.application/pdfeng510Homogenizationcorrector estimatesperiodic unfoldinggradient folding operatorperforated domainthermo-diffusioncomposite mediaCorrector estimates for a thermo-diffusion model with weak thermal couplingReport