This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Ros-Oton, XavierValdinoci, Enrico2016-03-242019-06-2820152198-5855https://doi.org/10.34657/3357https://oa.tib.eu/renate/handle/123456789/2814We study the interior regularity of solutions to a Dirichlet problem for anisotropic operators of fractional type. A prototype example is given by the sum of one-dimensional fractional Laplacians in fixed, given directions. We prove here that an interior differentiable regularity theory holds in convex domains. When the spectral measure is a bounded function and the domain is smooth, the same regularity theory applies. In particular, solutions always possess a classical first derivative. The assumptions on the domain are sharp, since if the domain is not convex and the spectral measure is singular, we construct an explicit counterexample.application/pdfeng510Regularity theoryintegro-differential equationsfractional Laplaciananisotropic mediarough kernelsThe Dirichlet problem for nonlocal operators with kernels: Convex and nonconvex domainsReport