This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Hoge, TorstenRöhrle, Gerhard2019-06-2820171864-7596https://doi.org/10.34657/2554https://oa.tib.eu/renate/handle/123456789/2664Let A be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction A 00 of A to any hyperplane endowed with the natural multiplicity is then a free multiarrangement. We initiate a study of the stronger freeness property of inductive freeness for these canonical free multiarrangements and investigate them for the underlying class of re ection arrangements. More precisely, let A = A (W) be the re ection arrangement of a complex re ection group W. By work of Terao, each such re ection arrangement is free. Thus so is Ziegler's canonical multiplicity on the restriction A 00 of A to a hyperplane. We show that the latter is inductively free as a multiarrangement if and only if A 00 itself is inductively free.application/pdfeng510Inductive freeness of Ziegler’s canonical multiderivations for reflection arrangementsReport