This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Avanesov, Valeriy2022-06-302022-06-302020https://oa.tib.eu/renate/handle/123456789/9337https://doi.org/10.34657/8375This paper considers the prominent problem of change-point detection in regression. The study suggests a novel testing procedure featuring a fully data-driven calibration scheme. The method is essentially a black box, requiring no tuning from the practitioner. The approach is investigated from both theoretical and practical points of view. The theoretical study demonstrates proper control of first-type error rate under H0 and power approaching 1 under H1. The experiments conducted on synthetic data fully support the theoretical claims. In conclusion, the method is applied to financial data, where it detects sensible change-points. Techniques for change-point localization are also suggested and investigatedeng510Bootstrapchange point detectionnonparametricsregressionmultiscaleNonparametric change point detection in regressionReport26 S.