This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Flegel, Franziska2018-04-162019-06-2820182198-5855https://doi.org/10.34657/2292https://oa.tib.eu/renate/handle/123456789/3097We generalize our former localization result about the principal Dirichlet eigenvector of the i.i.d. heavy-tailed random conductance Laplacian to the first k eigenvectors. We overcome the complication that the higher eigenvectors have fluctuating signs by invoking the Bauer-Fike theorem to show that the kth eigenvector is close to the principal eigenvector of an auxiliary spectral problem.application/pdfeng510Random conductance modelDirichlet spectrumeigenfunction localizationheavy tailsextreme value analysisEigenvector localization in the heavy-tailed random conductance modelReport