This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Grin, AlexanderSchneider, Klaus R.2017-09-282019-06-2820172198-5855https://doi.org/10.34657/2454https://oa.tib.eu/renate/handle/123456789/1961We consider planar autonomous systems dx/dt =P(x,y,λ), dy/dt =Q(x,y,λ) depending on a scalar parameter λ. We present conditions on the functions P and Q which imply that there is a parameter value λ0 such that for &lambda > λ0 this system has a unique limit cycle which is hyperbolic and stable. Dulac-Cherkas functions, rotated vector fields and singularly perturbed systems play an important role in the proof.application/pdfeng510Global bifurcationlimit cycleplanar autonomous systemDulac-Cherkas functionrotated vector fieldsingularly perturbed systemGlobal bifurcation analysis of a class of planar systemsReport