This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Goodwin, Simon M.Röhrle, Gerhard2019-06-2820121864-7596https://doi.org/10.34657/2805https://oa.tib.eu/renate/handle/123456789/1941Let G be a connected reductive algebraic group defined over an algebraically closed field k of characteristic zero. We consider the commuting variety C(u) of the nilradical u of the Lie algebra b of a Borel subgroup B of G. In case B acts on u with only a finite number of orbits, we verify that C(u) is equidimensional and that the irreducible components are in correspondence with the distinguished B-orbits in u. We observe that in general C(u) is not equidimensional, and determine the irreducible components of C(u) in the minimal cases where there are infinitely many B-orbits in u.application/pdfeng510Commuting varietiesBorel subalgebrasOn commuting varieties of nilradicals of Borel subalgebras of reductive Lie algebrasReport