This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Mielke, AlexanderNaumann, Joachim2016-03-242019-06-2820152198-5855https://doi.org/10.34657/2474https://oa.tib.eu/renate/handle/123456789/2812We consider Kolmogorov's model for the turbulent motion of an incompressible fluid in 3. This model consists in a Navier-Stokes type system for the mean flow u and two further partial differential equations: an equation for the frequency and for the kinetic energy k each. We investigate this system of partial differential equations in a cylinder x ]0,T[ ( 3 cube, 0 < T < +∞) under spatial periodic boundary conditions on x ]0,T[ and initial conditions in x {0}. We present an existence result for a weak solution {u, , k} to the problem under consideration, with , k obeying the inequalities formula1 and formula2.application/pdfeng510Navier-Stokes equationKolmogorov's turbulence modelturbulent kinetic energyglobal existence for weak solutionsdefect measurescaling lawsmaximum principleGlobal-in-time existence of weak solutions to Kolmogorov's two-equation model of turbulenceReport