This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Dimca, AlexandruIbadula, DenisMăcinic, Daniela Anca2019-06-2820171864-7596https://doi.org/10.34657/2769https://oa.tib.eu/renate/handle/123456789/2376Using several numerical invariants, we study a partition of the space of line arrangements in the complex projective plane, given by the intersection lattice types. We oer also a new characterization of the free plane curves using the Castelnuovo-Mumford regularity of the associated Milnor/Jacobian algebra.application/pdfeng510Plane curvesline arrangementfree curvessyzygyTerao's conjectureintersection latticeCastelnuovo-Mumford regularityNumerical invariants and moduli spaces for line arrangementsReport