This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Hu, GuanghuiLiu, Xiaodong2016-03-242019-06-2820142198-5855https://doi.org/10.34657/3449https://oa.tib.eu/renate/handle/123456789/2962In this paper, we prove uniqueness in determining a sound-soft ball or polyhedral scatterer in the inverse acoustic scattering problem with a single incident point source wave in RN (N = 2, 3). Our proofs rely on the reflection principle for the Helmholtz equation with respect to a Dirichlet hyperplane or sphere, which is essentially a 'point-to-point extension formula. The method has been adapted to proving uniqueness in inverse scattering from sound-soft cavities with interior measurement data incited by a single point source. The corresponding uniqueness for sound-hard balls or polyhedral scatterers has also been discussed.application/pdfeng510Inverse acoustic scatteringuniquenesspolyhedral scatterersballspoint source waveUnique determination of balls and polyhedral scatterers with a single point source waveReport