This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Fu, GuoshengLehrenfeld, ChristophLinke, AlexanderStreckenbach, Timo2022-06-302022-06-302020https://oa.tib.eu/renate/handle/123456789/9330https://doi.org/10.34657/8368Robust discretization methods for (nearly-incompressible) linear elasticity are free of volume-locking and gradient-robust. While volume-locking is a well-known problem that can be dealt with in many different discretization approaches, the concept of gradient-robustness for linear elasticity is new. We discuss both aspects and propose novel Hybrid Discontinuous Galerkin (HDG) methods for linear elasticity. The starting point for these methods is a divergence-conforming discretization. As a consequence of its well-behaved Stokes limit the method is gradient-robust and free of volume-locking. To improve computational efficiency, we additionally consider discretizations with relaxed divergence-conformity and a modification which re-enables gradient-robustness, yielding a robust and quasi-optimal discretization also in the sense of HDG superconvergence.eng510Linear elasticitynearly incompressiblelocking phenomenonvolume-lockinggradient-robustnessdiscontinuous GalerkinH(div)-conforming HDG methodsLocking free and gradient robust H(div)-conforming HDG methods for linear elasticityReport27 S.