This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Si, Hang2022-06-232022-06-232019https://oa.tib.eu/renate/handle/123456789/9186https://doi.org/10.34657/8224This paper considers three-dimensional prismatoids which can be embedded in ℝ³ A subclass of this family are twisted prisms, which includes the family of non-triangulable Scönhardt polyhedra [12, 10]. We call a prismatoid decomposable if it can be cut into two smaller prismatoids (which have smaller volumes) without using additional points. Otherwise it is indecomposable. The indecomposable property implies the non-triangulable property of a prismatoid but not vice versa. In this paper we prove two basic facts about the decomposability of embedded prismatoid in ℝ³ with convex bases. Let P be such a prismatoid, call an edge interior edge of P if its both endpoints are vertices of P and its interior lies inside P. Our first result is a condition to characterise indecomposable twisted prisms. It states that a twisted prism is indecomposable without additional points if and only if it allows no interior edge. Our second result shows that any embedded prismatoid in ℝ³ with convex base polygons can be decomposed into the union of two sets (one of them may be empty): a set of tetrahedra and a set of indecomposable twisted prisms, such that all elements in these two sets have disjoint interiors.eng510Twisted prismstwisted prismatoidstorus knotsindecomposable polyhedraSteiner pointsSchönhardt polyhedronRambau polyhedronOn decomposition of embedded prismatoids in $R^3$ without additional pointsReport14 S.