This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Berthold, HolgerHeitsch, HolgerHenrion, RenéSchwientek, Jan2022-07-052022-07-052021https://oa.tib.eu/renate/handle/123456789/9553https://doi.org/10.34657/8591We present an adaptive grid refinement algorithm to solve probabilistic optimization problems with infinitely many random constraints. Using a bilevel approach, we iteratively aggregate inequalities that provide most information not in a geometric but in a probabilistic sense. This conceptual idea, for which a convergence proof is provided, is then adapted to an implementable algorithm. The efficiency of our approach when compared to naive methods based on uniform grid refinement is illustrated for a numerical test example as well as for a water reservoir problem with joint probabilistic filling level constraints.eng510Probabilistic constraintsprobust constraintschance constraintsbilevel optimizationsemi-infinite optimizationadaptive discretizationreservoir managementOn the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraintsReport30 S.