This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Kauffman, Louis HirschManturov, Vassily Olegovich2019-06-2820151864-7596https://doi.org/10.34657/2461https://oa.tib.eu/renate/handle/123456789/2776We construct graph-valued analogues of the Kuperberg sl(3) and G2 invariants for virtual knots. The restriction of the sl(3) and G2 invariants for classical knots coincides with the usual Homflypt sl(3) invariant and G2 invariants. For virtual knots and graphs these invariants provide new graphical information that allows one to prove minimality theorems and to construct new invariants for free knots (unoriented and unlabeled Gauss codes taken up to abstract Reidemeister moves). A novel feature of this approach is that some knots are of sufficient complexity that they evaluate themselves in the sense that the invariant is the knot itself seen as a combinatorial structure. The paper generalizes these structures to virtual braids and discusses the relationship with the original Penrose bracket for graph colorings.application/pdfeng510Knotlinkvirtual knotgraphinvariantKuperberg sl(3) bracketKuperberg C2 bracketKuperberg G2 bracketquantum invariantGraphical constructions for the sl(3),C2 and G2 invariants for virtual knots, virtual braids and free knotsReport